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ABSTRACT. Studies of Word Sense Disambiguation have made extensive use of 

unstructured contextual features for disambiguating polysemous words, while this paper 

aims to testify the validity of adopting linguistically-motivated and semantically-encoded 

features for classifying word senses. It conducts an innovative pilot study on supervised 

Word Sense Disambiguation of a Chinese polysemous verb fán 煩 “to annoy/be 

annoying/be annoyed” via the use of frame-based constructional (FC) features. 

Experimental results have shown significant improvement of using FC over the baseline 

sets, with the weight average FΔmax attains to 0.312. Besides, the noun phrase feature set 

also shows impressive performance compared to uni-grams and bi-grams, which tends to 

imply a close relation between verb meaning and core arguments. The promising results 

have proved the great discriminativeness of FC for sense disambiguation and suggest a 

possible alternation of employing/combining deep linguistic resources for Natural 

Language Processing applications in future. 

 

Keywords: Word Sense Disambiguation, Frame-based Constructional Features, 

Supervised Machine Learning, Polysemous Emotion Verb fán, Lexicalization Pattern 

 

 

 

                                                 
 An earlier version of the study was presented at the 2018 CLSW conference in Tai Wan and is 

developed into a fuller paper here, with the original dataset expanded from 200 sentences to 500 

sentences. The data used in the study is from Mandarin VerbNet, an online semantic lexicon of Mandarin 

verbs. 
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1. Introduction. Lexical semantic ambiguity, also known as Polysemy1 in Linguistics, has 

been a problematic issue of Natural Language Processing (NLP) applications, for it may 

cause inferior performance to tasks that rely largely on the accurate identification of word 

meaning, such as in Machine Translation, Information Retrieval, automatic part-of-speech 

tagging and syntactic parsing [1]. Word Sense Disambiguation (WSD) has therefore arisen 

to tackle the problem by referring to the context of the polysemous word. In the following 

paragraphs, we will firstly give a general review on the related studies and then highlight 

the uniqueness and significance of our work.  

Studies of WSD can be traced back earliest to 1950s [2] when Kaplan adopted a few 

simple rules to infer the word sense. Since then the rule-based method had been dominant 

in this subject for a few decades. Recently, with the prevalence of digitalized techniques, 

two more methods are commonly adopted in the current studies: dictionary-based (see e.g. 

[3, 4]) and statistics-based. Since 1990s, Machine Learning has become popular in the 

state-of-the-arts, and it mainly includes three methods: supervised Machine Learning (see 

e.g. [5, 6]), unsupervised Machine Learning (see e.g. [7]), and semi-supervised Machine 

Learning (see e.g. [8]). The supervised method is to predict the verb class with external 

labels, that is, to train the Machine Learning models on representative features of the target 

class on the basis of a pre-categorized dataset. The supervised mode is claimed to achieve 

the best performance out of a relatively small set of structured data, which however 

requires manual annotation in the data pre-processing; in contrast, unsupervised Machine 

Learning is a method without any external pre-labels, and it is suitable for clustering tasks 

on big data. However, it is computationally more demanding in terms of feature selection 

and clustering algorithms; semi-supervised Machine Learning is a hybrid approach between 

the two. In this paper, we adopt the supervised Machine Learning for WSD with the use of 

a small set of semantically-annotated data (500 sentences2 containing the polysemous verb 

fán 煩) from the well-structured semantic online lexicon–Mandarin VerbNet (MV) [9]. 

This database has enabled us to attest the validity of using linguistically-enriched context 

for WSD. Details of the approach to the linguistic analysis of the verb and the semantic 

annotation will be introduced in section 2.  

In terms of the choice of representative features in the context, past studies (see e.g. [10, 

11]) have extensively adopted pure lexical features, such as n-grams of words and 

characters (see e.g. [12]), and word-to-vectors [13]. A few researches are based on 

similarity measurement (see e.g. [14]). Few attempts are found on using deep linguistic 

features. Besides, many relevant studies are focused on English polysemous words, WSD 

of Chinese polysemous words has far less been dealt with. One reason is the semantic 

heterogeneity of Chinese words (esp. monosyllabic words), and another is the difficulty of 

getting access to a semantic resource of Chinese which is systematic and fine-grained 

                                                 
1 Polysemy is the association of one word with two or more distinct but related meanings, such as the 

case of ‘bank’. In WordNet, it has 10 meanings as a noun and 8 meanings as a verb. 
2 The dataset has been expanded to 500 instances compared to the original 200 instances in the 

preliminary experiment. The new results generally conform to the original findings, but with minor 

differences (see detailed results in section 4). 
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enough. As a pilot study, this paper takes an innovative trial by employing frame-based 

constructional features (see e.g. [15-18]) for supervised WSD on the Chinese polysemous 

verb fán 煩 “to annoy/be annoying/be annoyed”, with the aims to 1) introduce the 

frame-based constructional approach to the resolution of lexical semantic ambiguity; 2) 

testify the discriminative power of frame-based semantic-to-syntactic encodings for WSD, 

in comparison to other basic features, such as n-grams of neighboring words and phrases; 3) 

highlight the significance of using deep linguistic interpretations for improving NLP tasks 

in the long run.  

To fulfill the above research purposes, this paper will give a detailed account of the 

frame-based constructional (FC) approach to emotion verbs by focusing on the Chinese 

verb fán 煩 in section 2 and conduct eight supervised WSD experiments on four sets of 

features with two classifiers in section 3. In section 4, the results will be displayed and 

discussed with data interpretation and analysis. Conclusions will be given in section 5. 

 

2. The FC Approach to Emotion Verbs in Chinese. 

2.1. What is Frame-based Constructional Approach? In this paper, the Frame-based 

Constructional (FC) features we use for the WSD experiment are based the frame-based 

constructional annotations in the MV verbal lexicon. The FC approach to Mandarin verbs is 

proposed by Liu [15–18], which is a hybrid approach for annotating Mandarin verbal 

lexicon, by incorporating tenets of Frame semantics [19, 20], Construction Grammar [21] 

and Cognitive Grammar [22].  

According to Frame Semantics, the meaning of a verb can be defined only in relation to a 

structured background of eventive knowledge and experiences. The background frame is 

shared by semantically related lemmas that can be best described and unified within a set of 

frame-specific participant roles, i.e. frame elements. Take two basic domains for example, 

Financial Transaction verbs share a background frame consisting of core elements such as 

Buyer, Seller, Goods, Money, as in “[Lee]Buyer BOUGHT [a book]Goods from [Aby]Seller with 

[2 dollars]Money”. Emotion verbs are usually set in a frame of Experiencer, Stimulus and 

other related elements, as in “[Money]Stimulus PLEASES [John]Experiencer”. In addition to the 

frame-based conceptualization, a commonly held belief in lexical semantic studies is that 

the meaning of a verb is manifested in syntactic realizations [23]. Under this premise, 

verbal meanings can only be distinguished if they are syntactically detectable. Expanding 

upon the frame-verb relation by integrating the syntactic-to-semantic notion that verbal 

meanings can be distinguished by the help of their formal behaviors, the FC approach 

refines the semantic notion of frames with the aid of syntactic constraints from 

Construction Grammar. A construction is defined as a basic form-meaning mapping 

template that can be instantiated with a semantically compatible verb as an instance of 

construction realization. Constructions and verbs, both as meaning-bearing units, go 

hand-in-hand in defining the semantics of argument realizations characteristic of a given 

background frame. 

The following example of the placement verb 放 fang ‘to put/place’ is shown below to 

illustrate the FC approach, together with the semantic annotation: 
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Example 2.1. 他    把    書    放    在   房間裏 

            tā     bǎ   shū    fàng  zài   fángjiān-lǐ 

            3p.sg   BA  book   put    at   room-inside 

         ‘She put the book in the room.’ 

The semantic annotation of the above example with the FC tags is shown below: 

 [他]Placer [把]*BA [書]Figure [放]PLACEMENT [在]*Locative_mkr [房間裏]Ground 

As shown above, the different semantic tags of defining the placement verb fáng 放 are 

categorized into three kinds of information: the frame (all capitalized), the core frame 

elements (initial-letter capitalized), as well as the constructional markers (marked by 

asterisks) of the verb, as summarized below: 

 Frame: PLACEMENT 

 Core frame elements: Placer, Figure, Ground_loc 

 Construction markers: *BA, *Locative_mkr 

Frame elements are the verb-specific core and non-core elements (participant roles) that 

can profile the verb meaning on the basis of Fillmore’s schematic theory that verb senses 

are anchored in frames. Construction markers are the salient syntactic indicators that are 

closely associated to the verbs, and they are based on Levin’s alternation-based approach 

and Goldberg’s Construction Grammar indicating the close relation between verb classes 

and syntactic constructions. The following section will focus on the introduction of Liu’s 

analysis of Emotion verbs [16] to specify the FC approach to the domain of Emotion verbs. 

2.2. FC to Emotion Verbs and the Special Lexicalization Patterns. In the study of 

lexical semantics, Emotion (psycho-logical or psych) verb is one of the most fundamental 

and appealing topics to linguists. For example, Talmy [24] introduced the dichotomy of 

emotional valence in terms of subject selection (Stimulus as subject vs. Experiencer as 

subject). Valin [25] proposed one crucial notion of “Effector”in addition to Talmy’s basic 

theory, which underpins the property of a volitional and acting instigator involved in an 

inchoative event (causing change to the affected). On their basis, Liu [16] comprehensively 

studied the five-way distinctions of lexicalization pattern of emotion verbs, as shown in the 

following examples. 

Example 2.2. stimulus-as-subject + transitive (Liu [16: example 54d]) 

            這個   問題     煩    了    我    三天三夜 

            zhè-gè  wèntí     fán    le     wǒ   sāntiānsānyè 

            this-CL  problem  annoy  ASP  1p.sg  three-days-and-nights 

         ‘This problem has bothered me for three days and nights.’ 

The semantic annotation of the above example with the FC tags is shown below: 

 [這個問題]Stimulus [煩]STIM-SUBJ了[我]Experiencer[三天三夜]Duration 

Example 2.3. stimulus-as-subject + intransitive (Liu [16: example 54c]) 
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            明天     的    考試    很     煩 

            míngtiān  de   kǎoshì   hěn    fán 

            tomorrow  DE  exam   DEG   annoy 

         ‘The exam tomorrow is very annoying.’ 

The semantic annotation of the above example with the FC tags is shown below: 

 [明天的考試]Stimulus [很]*Degree[煩]STIM-SUBJ 

Example 2.4. experiencer-as-subject + transitive (Liu [16: example 54b]) 

            你    在    煩     什麽 ？ 

            nǐ    zài    fán    shíme 

            2p.sg PROG  bother  what 

         ‘What are you bothered of?’ 

The semantic annotation of the above example with the FC tags is shown below: 

 [你]Experiencer在[煩]EXP-SUBJ[什麽]Target？ 

Example 2.5. experiencer-as-subject + intransitive (Liu [16: example 54a]) 

            我    好     煩    啊！ 

            wǒ    hǎo    fán    ā！ 

            1p.sg  DEG  bother  EXC 

         ‘I am so much bothered!’ 

The semantic annotation of the above example with the FC tags is shown below: 

 [我]Experiencer[好]*Degree[煩]EXP-SUBJ啊！ 

Example 2.6. affector-as-subject (Liu [16: example 53c]) 

            老闆    一直     煩      他 

            lǎopǎn   yīzhí    fán      tā 

            boss     always   trouble  3p.sg 

         ‘The boss has been bothering him’ 

The semantic annotation of the above example with the FC tags is shown below: 

 [老闆]Affector一直[煩]BOTHER[他]Affectee！ 

2.3. The Tripartite Senses of fán 煩. On the basis of the five-way distinctions of emotion 

verbs in Liu [16], we find from corpus data that the verb fán is polysemous in that it can 

denote three salient possible meanings: to annoy (S1), be annoying (S2) or be annoyed (S3). 

In MV, the three senses are tagged as BOTHER (affector-as-subject, with volition of the 

agentive emotion), STIM-SUBJ (stimulus-as-subject, with the causative stimulus for 

provoking an emotion) and EXP-SUBJ (experiencer-as-subject, with the direct emotion of 

the experiencer) respectively in the dataset. The following examples of fán 煩 are used to 

show some of the polysemous cases: 

Example 2.7.  Two possible interpretations, with semantic annotations:  

             他   真的   好   煩！ 
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             tā   zhēnde  hǎo  fán  

             3p.sg  really DEG  annoy 

        S2: ‘He is really annoying!’[他]Stimulus真的[好]⋆Degree [煩]STIM-SUBJ 

        S3: ‘He felt so annoyed!’  [他]Experiencer真的[好]⋆Degree [煩]EXP-SUBJ 

Example 2.8.  Three possible interpretations, with semantic annotations:  

             數學   老師    煩    死    他    了！ 

             shùxué  lǎoshī   fán   sǐ     tā     le 

             Math   teacher  annoy  DEG  3p.sg  LE 

        S1: ‘The Math teacher has annoyed him a lot (with volition)!’ 

           [數學老師]Affector [煩]BOTHER[死]⋆Degree[他]Affectee了 

        S2: ‘The Math teacher is so annoying for him (without volition)!’   

           [數學老師]Stimulus [煩]STIM-SUBJ[死]⋆Degree[他]Experiencer了 

        S3: ‘The Math teacher is so annoyed of him!’   

           [數學老師]Experiencer [煩]EXP-SUBJ[死]⋆Degree[他]Target了 

Example 2.9.  Two possible interpretations, with semantic annotations:  

             他    煩    你   了？ 

             tā     fán   nǐ   le 

             3p.sg  annoy 2.sg  LE 

        S1: ‘Has he bothered you?’  [他]Affector [煩]BOTHER[你]Affectee了? 

        S3: ‘Is he annoyed of you?’  [他]Experiencer [煩]EXP-SUBJ[你]Target了? 

The examples (2.7-2.9) have proved the polysemous property of the verb fán as it can be 

ambiguous with two or three possible meanings (S1-3). For each interpretation of the 

ambiguous verb, it shows distinct construction patterns correlated to that particular sense, 

as the multiple meanings are anchored in their core Frame Elements and constructions. For 

example: S1 (to annoy) has a distinct construction pattern (CP) of [Affector]-[V]-[Affectee], 

where [V] represents the prediction verb; S2 (be annoying) has a distinct CP of 

[Stimulus]-[*Degree]-[V]; and S3 (be annoyed) has a distinct CP of 

[Experiencer]-[*Degree]-[V]. On the basis of Liu’s analysis of emotion verbs [16], as well 

as the form-meaning mapping principle [19, 21, 23], this study is enabled to borrow a gold 

standard training data which is encoded with rich semantic information for the supervised 

WSD experiments, as will be shown in Section 3 and 4. 

 

3. Experiment Setup.  

3.1. Data and Tools. The training and testing data is from the database of MV, in which 

there are 500 sentences that contain fán 煩 as the main predicate and are well annotated 

with frame-based constructional information. The annotation process is executed 

semi-automatically by using the open source editor Atom with specially designed 

embedding package ‘VerbNet Tool’ for data management. Manual Validation and Inter 
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Annotator Agreement are also conducted to ensure the accurateness of the annotation.  

In the supervised WSD task, the dataset is experimented in the ten-fold cross validation 

mode (see [26]) which is an effective way for Machine Learning that deals with a small size 

of data and to avoid a biased result. The raw sentences before the semantic annotation were 

retrieved and randomly sampled from the Chinese Gigaword (LDC2003T09) with a normal 

distribution. Lexical n-gram collocation features of the polysemous verb are automatically 

extracted from the raw sentences by self-programs run on PyCharm Community [27]. 

Syntactic collocation features of the main verb are also automatically extracted from parsed 

trees by Stanford Parser [28] with manual adjustment. The Machine Learning tasks are 

carried out by using the open source data mining software WEKA [29], which provides a 

collection of several state-of-the-art Machine Learning algorithms. 

3.2. Feature sets. Four feature sets have been tested in the WSD experiments and they are: 

Uni-gram: +1 and –1 window size in character unit of the ambiguous word. Uni-gram 

represents the one-character context of the ambiguous verb. For example, in the sentence 

“你少煩我”, the Uni-gram characters would be “你”, “少” and “我”. For the 500 sentences 

of fán, there are 1006 types of Uni-grams in total, which constitute the Uni-gram feature set 

with 1007 attributes (adding one attribute of verb sense) and 500 instances (samples) in the 

WSD experiment, serving as one baseline set for comparison. 

Bi-gram: +2 and –2 window size in character unit of the ambiguous word. Bi-gram 

represents the two-character context of the ambiguous verb. For example, in the sentence 

“你少煩我”, the Bi-grams would be “你少”and “我 Ø”, where Ø represents a null 

existence for forming a bi-gram. For the 500 sentences of fán, there are 3249 types of 

Bi-grams in total, which constitute the Bi-gram feature set with 3250 attributes and 500 

instances in the WSD experiment, serving as another baseline set for comparison. 

Uni-NP: +1 and –1 window size in NP unit of the ambiguous word. Uni-NP represents 

the one-NP context of the ambiguous verb. For example, in the sentence “你少煩我”, the 

Uni-NP would be “你” and “我”. If there is no noun phrase surrounding the main verb, 

such as in “煩死了”, the Uni-NP would be Ø. For the 500 sentences of fán, there are 266 

types of Uni-NPs in total, which constitute the Uni-NP feature set with 267 attributes and 

500 instances in the WSD experiment, serving as the third baseline set for comparison. 

FC: the frame-based constructional context of the ambiguous word. FC represents the 

semantic-syntactic context of the ambiguous verb, as shown in the examples of section 2. 

For example, in the annotated sentence “[你]Affector 少[煩]BOTHER [我]Affectee”, the FC would 

be “[Affector]” and “[Affectee]”. For the 500 annotated sentences of fán, there are 21 types 

of FC features in total, which constitute the FC feature set with 22 attributes and 500 

instances in the WSD experiment, serving as the target feature set. 

The four kinds of feature sets are converted to attribute tables for the WSD Machine 

Learning tasks by self-programs, in which the attribute property is Boolean value, i.e., 0 for 

absence and 1 for presence of one particular attribute (feature) in one instance (sentence). 

These attribute values, together with the pre-categorized labels (sense of the verb), are then 

fed into the learning models for training and testing with ten-fold cross validation. In the 



 

40 

 

 

 

 

testing process, the performances of the WSD tasks using the four feature sets are 

calculated automatically and output by Weka.  

3.2. Classifiers. The Naïve Bayes (NB) and Sequential Minimal Optimization (SMO) 

models are adopted as the classifiers for the experiment in this paper. Preliminary 

experiments on using several state-of-the-art classifiers (e.g. NB, SMO, J48-decision tree, 

K-Nearest-Neighboring and so on) consistently showed the outstanding performance of NB 

and SMO compared to the other classifiers. They have been claimed to perform 

outstandingly well with either data sparseness or the overfitting problem. (see e.g. [26, 30, 

31]). 

NB: The Naïve Bayes algorithm is most widely adopted in Machine Learning because of 

its simplicity and fast speed of building the model, yet with impressive performances; it is a 

probabilistic classifier based on the assumption that all the predicators are mutual 

independent. In real cases, such assumption is indeed Naïve, but it is still claimed to 

perform surprisingly well despite of the correlation of the predictors; Li and Jain [30] 

indicated that NB is good at dealing with the over-fitting problem and the performance of 

NB improves as the number of features increases. Besides, they found that NB requires 

only a small number of training data to achieve good performance. 

SMO: The Sequential Minimal Optimization algorithm is an advanced SVM (Support 

Vector Machine) that is realized by John Platt’s pairwise classification model [32] which 

effectively solved the Quadratic Programming (QP) problem by decomposing it into small 

sequences of minimal optimizations; SMO is also enabled for multi-class classification by 

using the “one vs. one” algorithm. As proven by many researchers, SVM is a very powerful 

classifying model that shows significantly better performance than many state-of-the-art 

classifiers in most cases. Besides, Joachims [33] explained that SVM uses over-fitting 

protection to ensure its well performance for dealing with features of high dimensionality, 

and it does not require parameter tuning to achieve high accuracy, as he put it “With their 

ability to generalize well in high dimensional feature spaces, SVMs eliminate the need for 

feature selection, making the application of text categorization considerably easier.” 

3.3. Evaluation Metric. In this paper, F-Measure, also known as F-score, is adopted as the 

metric for evaluating the WSD performance. It is a most widely used formula for 

calculating classification performance. The following formulae illustrate how F-Measure is 

defined: 

Precision: P=TP/(TP+FP) 

Recall: R=TP/(TP+FN) 

F-Measure: F=2PR/(P+R) 

Where TP = true positives, FP = false positives, FN = false negatives.  

More details about the measurement can be found in Manning and Schütze [34].  

 

4. Results and Discussions. In the following tables and graphs, S1 stands for sense 1 (‘to 

annoy’) which corresponds to the BOTHER frame, S2 stands for sense 2 (‘be annoying’) 

which corresponds to the STIM-SUBJ frame, and S3 stands for sense 3 (‘be annoyed’) 
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which corresponds to the EXP-SUBJ frame; ‘W Avg.’ stands for the weighted average 

Precision (P), Recall (R) and F-Measure (F); ‘FΔ’ stands for the F-Measure discrepancy 

between a pair of feature sets in comparison. ‘FΔmax’ stands for the maximum ‘FΔ’ among a 

group of feature sets. The experimental results and discussions are shown in the following 

subsections: 

4.1. Overall Performance. This section gives a general comparison among all the four 

feature sets with the two classifiers for both individual classes (senses) and averaged 

performance. See the summarized results in terms of F in the following table. 

TABLE 1. OVERALL PERFORMANCE OF THE FOUR FEATURE SETS 

 

Uni-gram Bi-gram Uni-NP FC 
FΔmax 

NB SMO NB SMO NB SMO NB SMO 

S1 0.378 0.358 0.624 0.634 0.596 0.629 0.990 1.000* 0.642 

S2 0.467 0.544 0.491 0.590 0.627 0.655 0.896 0.899* 0.432 

S3 0.745 0.772 0.744 0.780 0.822 0.829 0.939* 0.934 0.195 

W Avg. 0.618 0.657 0.650 0.704 0.682 0.704 0.930* 0.929 0.312 

As shown in Table 1, the FC feature set consistently achieves the best F (marked by *) 
for each sense class with either NB or SMO, while the worst performance (marked by 

underlines) falls in the range between Uni-gram and Bi-gram. In terms of the W Avg. F, the 

FC set outperforms the other three feature sets with an outstanding score of 0.930 via the 

use of NB; by contrast, Uni-gram shows the lowest W Avg. F of 0.618 via the use of NB. 

The FΔmax stands for a maximal F discrepancy among a group of figures in comparison, and 

the W Avg. FΔmax (0.312) shows the averaged F discrepancy out of the three individual 

senses. In order for a more visualized presentation of the classification results, we use the 

following Figure for further illustration. 

 
FIGURE 1. THE OVERALL PERFORMANCE OF THE FOUR FEATURE SETS WITH TWO CLASSIFIERS 

The result in Figure 1 generally shows a significant improvement of using FC features 

for WSD over the three baselines, indicating the greater discriminativeness of the 



 

42 

 

 

 

 

frame-based constructional features than the lexical features for sense classifying, which 

echoes the “one frame, one sense” principle proposed by Liu [15-18]. It also indicates the 

usefulness of adopting argument structures (Uni-NP) for WSD, compared to the lexical 

features, which seems to suggest a positive correlation between argument realization and 

verb sense. Within the two n-gram feature sets, Bi-gram shows a slight better performance 

than Uni-gram, which can be explained by the skewed feature space between the two sets. 

As shown in section 3.1, the feature dimension of Bi-gram is much higher than of Uni-gram 

(feature dimension: 3250 vs. 1007), and both classifiers are good at dealing with high 

dimension features without the over-fitting problem. The higher feature space of Bigram 

renders a higher chance of including more indicative features for inferring the correct 

senses. One additional observation is that the classification performance of each feature set 

varies to certain degree at different individual verb senses (S1-3). The following 

subsections will give more specific comparisons from more perspectives. 

4.2. Cross-sense Comparison. This section gives a comparison of mean F (an averaged F 

of the four feature sets for each sense of S1-3) across the three senses with the two 

classifiers. The results are shown in Figure 2 below.  

It clearly shows the largely scattered performances of the three different senses for both 

classifiers: S3 (be annoyed) can be disambiguated most successfully than S1 (to annoy) and 

S2 (be annoying); S1 is slightly easier to discern compared to S2. In order to find out the 

possible reasons for causing such differences, Figure 3 is given to show the instance 

distribution of the three senses in the dataset to account for the performance variation. 

 

 
 

FIGURE 2. THE MEAN F ACROSS THE THREE SENSES 
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FIGURE 3. INSTANCE DISTRIBUTION OF THE THREE SENSES IN THE DATASET 

As clearly shown in Figure 3, S3 accounts for the largest proportion (57.6%) of the 500 

instances which ensures a biggest number of training data among the three. With a larger 

size of training data, the classifiers are more likely to disambiguate the “be annoyed” sense. 

But interestingly, even though S2 (be annoying) takes up a higher proportion of instances 

than S1 (to annoy) (32.4% vs. 10%), its WSD performance is unexpectedly worse. This can 

be explained by the more confusing context of the “be annoying” sense with the other 

senses, as shown in the examples (2.7-2.9). The classifiers are more likely to be confused 

when labelling this sense. The following subsection will give a fuller analysis for 

explaining such confusion by focusing on the FC set. 

4.3. Detailed Performance of FC. This section shows more detailed results of FC in the 

WSD tasks. The main classification output in terms of P, R, and F is shown in Table 2 and 

the confusion matrices of using the two classifiers are displayed in Table 3 to help identify 

the most confusing senses. 

TABLE 2. PERFORMANCE OF FC IN TERMS OF P, R AND F 

 

NB SMO 

P R F P R F 

S1 0.980 1.000 0.990 1.000 1.000 1.000 

S2 0.886 0.907 0.896 0.825 0.988 0.899 

S3 0.947 0.931 0.939 0.992 0.882 0.934 

W Avg. 0.930 0.930 0.930 0.939 0.928 0.929 

Results in Table 2 show that 1) S1 tends to perform well in terms of both Precision and 

Recall for both classifiers, while S3 tends to perform well in terms of Precision and S2 

tends to perform well in terms of Recall; 2) S2 performs worst in terms of Precision among 

the three senses for both classifiers and this causes its low F in average; 3) the two 

classifiers show equal performance in average with minor discrepancy (FΔ=0.001). The 

following two confusion matrices in Table 3 is shown below to help to find out the most 

confusing cases. 
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TABLE 3. CONFUSION MATRICES OF FC WITH THE TWO CLASSIFIERS 

NB SMO 

a b c  classified as a b c  classified as 

50 0 0 a = S1 50 0 0 a = S1 

0 147 15 b = S2 0 160 2 b = S2 

1 19 268 c = S3 0 34 254 c = S3 

As shown in Table 3, for the NB classifier, 15 instances of S2 are misclassified as S3, 

and 19 instances of S3 are misclassified as S2; similarly, for the SMO classifier, 2 instances 

of S2 are misclassified as S3, and 34 instances of S3 are misclassified as S2. This proves 

that S2 (be annoying) and S3 (be annoyed) are the most confusing senses among the three, 

which conforms to the observation in the examples (2.7-2.9). Besides, one instance of S3 is 

misclassified as S1 for the NB classifier, but this does not happen with the SMO classifier. 

This may imply a more robust performance of SMO, compared to NB, or a better fitness of 

SMO with low dimension feature set (22 attributes for FC). 

 

5. Conclusions. This paper has innovatively made use of FC features to disambiguate the 

tripartite senses of the Chinese polysemous verb fán 煩  “to annoy/be annoying/be 

annoyed”. Based on the 500 semantically annotated sentences from Mandarin VerbNet with 

FC features, the experiments have obtained fairly impressive results. It is suggested that 

carefully encoded semantic information is significantly more effective for discerning word 

senses than pure lexical context. The findings have also echoed the form-meaning mapping 

principle of Liu [15–18] that verb meaning is closely associated with argument structures, 

and it is realized with salient constructional patterns. This indicates a dynamic interaction 

between lexis, construction and verb sense. To conclude, this paper serves as a good 

example of exploring deep linguistic encodings for NLP applications and has paved the 

way for more possibilities in NLP advancement. However, the challenge goes to the 

difficulty in labeling such FC tags in a fully automatic way, which elicits the need of 

automating FC labeling in the near future. Besides, one limitation of this study is that the 

size of the dataset is rather small, which results in the salient performance discrepancy 

between the baseline sets and the FC set. In the case of larger data, the lexical features are 

expected to boost performance to certain degree, but the case of FC features still needs 

further examination. It is still safe to conclude that frame-based constructional features are 

more discriminative than pure lexical features, at least for predicting verb senses, and the 

advantage is even obvious when the dataset is small. As implied from the results, the 

linguistically-enriched tags may become extremely useful when we encounter the problem 

of data sparseness. 
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