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ABSTRACT. The size of cloud data center is growing rapidly. The larger the data center is, 

the more energy it consumes. Therefore, more and more researchers focus on energy 

efficient resource management techniques in the data center. The most popular way is a 

dynamic on-demand resource provision which allows turning off part of idle servers to 

save energy. But numerous part of the relevant research just considers how to maximize 

the resource utilization, i.e. minimize the required servers, without considering the 

overhead of a virtual machine (abbreviated as a VM) placement change. In this work, we 

propose a new method to minimize the energy consumption and VM migration at the same 

time; moreover we also design a network-flow-theory based approximate algorithm to 

solve it. The simulation results show that, compared to existing work, the proposed 

method can slightly decrease the energy consumption but greatly decrease the number of 

VM placement change (nearly 75%). 

Keywords: Cloud computing; Virtual machine; Energy efficiency; Resource management; 

Approximate optimization 

 

1. Introduction. Recently, cloud computing [1] has attracted considerable attention and is 

believed to become one of the most important future computing and service paradigm. 

Everything in cloud computing is regarded as a service, such as IaaS (Infrastructure as a 

Service), PaaS (Platform as a Service), SaaS (Software as a Service), etc. These 

cloud-based services integrate globally distributed resources into seamless computing 

platforms and make them available on a subscription basis using pay-as-you-use model to 

customers, regardless of their locations. This new paradigm brings growing demand for 

high performance computing infrastructures and leads to construction of large-scale 

computing data center, called cloud data center (abbreviated as CDC).  

CDC has several key features which should be considered in efficient resource 

management. (1) CDC is large scale. A typical CDC commonly hosts tens of thousands of 

servers and serves hundreds or even thousands of web-based application service (e.g. SaaS) 

at the same time. (2) Resources (e.g. CPU, memory, disk, bandwidth, etc.) in CDC are 

virtualized. Virtualization technique abstracts lower-level server hardware resource and 
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provides on-demand resource for the upper-level services which are capsulated in virtual 

machines (VM). Moreover, modern VM software, like Xen [2] and VMware [3], supports 

live migration which allows VM instance migration from one server to another. (3) Service 

level agreement (SLA) cannot be violated. The cloud computing system must provide 

reliable QoS which can be defined in terms of SLA that describes such characteristics as 

minimal throughput, maximal response time or latency delivered by the deployed system. 

It is obvious that such a complex system cannot be efficiently managed by manual 

operation and the most popular way is an adaptive resource management technique [4]. One 

of the important steps in such technique is dynamical resource provisioning which 

periodically monitors the data center and collects data including workload, QoS etc. And 

estimate the workload of each service in the next time period and then make a decision 

about VM resource reconfiguration and placement change [5]. 

In this work, we assume that the workload of each service in the next time period have 

been estimated and just explore an efficient method to decide the solution about 

re-allocating resources to each VM meanwhile changing the placement of VM. Two aims 

are considered in our solution. The first is minimizing energy consumption because high 

energy consumption not only translates to high energy and maintenance cost, which will 

reduce the profit margin of IaaS providers, but also high carbon emissions which is not 

environmentally sustainable [4]. The second is minimizing the number of VM placement 

change. This is due to that no matter VM live migration or VM start/stop leads to extra 

resource overhead and system performance degradation [2] [3]. 

The rest of this paper is organized as follows. Section II introduces the related works. 

Section III models the system and formulates the problem. Section IV introduces the 

designed algorithm. We explain the simulation and performance evaluation results in 

section V. The paper is finally concluded in Section VI. 

 

2. Related Works. Recently, the technique of adaptive resource management in the cloud 

data center or virtualized data center attracts many researchers working on this hot topic. 

X. Y. Sun et al. [5] propose an integrated architecture for efficient resource management 

in virtualized systems. The method handles automated capacity and workload management 

at three different scopes, i.e. (1) on the shortest time scale (second), node controllers 

dynamically adjust resource allocations to the VM which aims to aims to satisfy the SLO 

(Service Level Objective) of individual applications (or service). (2) On a longer time scale 

(minutes), pod controllers manage pods by adjusting the placement of workloads on nodes 

within a pod; (3) On the longest time scale (hours), pod sets controllers study the resource 

consumption history of many workloads and determines whether the data center has enough 

resource capacity to satisfy workload demands, places compatible workloads onto nodes, 

and group nodes into pods. 

A similar idea is proposed by A. Beloglazov and R. Buyya in [6]. They design 

three-level architecture to meet the requirement of large scale resource management. The 

local-manager node is responsible for making decisions about resource allocation and VM 

placement change. In our work, we adopt this model. 
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K. H. Kim et al. explore the problem of power-aware allocation of VM in DVS-enable 

cloud data centers for application services based on user QoS requirements such as the 

deadline and budget constraints [7]. In their research, the system is composed of a set of 

cloud data centers. When a user submits a request to the system, a global broker would ask 

each data center to calculate a price of provisioning resource (i.e. VM). Then the broker 

chooses the data center which provides the lowest price to provide service. Three policies 

are proposed for scheduling real-time VM to reduce the energy consumption, while 

meeting deadline constraints and maximizing the acceptance rate of provisioning requests, 

called Lowest-DVS, δ-Advanced-DVS and Adaptive-DVS respectively.  

G. Laszewski et al. [8] proposed a power-aware algorithm for scheduling virtual machine 

in a DVS-enable compute cluster. They regard the virtual machine as a group of requests 

and model it in terms of required processor frequency and required executing time, just as 

most of the power-ware tasks scheduling works, and schedule VM from high frequency 

server to that which frequency is low to achieve load balance. However, these works only 

consider the dynamic power but ignore the fixed energy consumption. 

D. Kusic et al. [9] implement and validate a dynamic resource provisioning framework 

for virtualized server environments wherein the provisioning problem is posed as one of 

sequential optimization under uncertainty and solved using a lookahead control scheme. 

Their objective is to maximize the service provider‟s profit by minimizing both energy 

consumption and SLA violation. Switching servers on / off as well as resizing and dynamic 

consolidation of VM via VM migration are applied as power saving mechanisms. Two key 

challenges are considered in the model, i.e. (1) quickly changing workload and (2) the cost 

for switching hosts and VM on/off. However, the proposed model requires 

simulation-based learning for the application specific adjustments. Moreover, due to the 

complexity of the model the optimization execution time reaches 30 minutes even for a 

small experimental setup (15 servers), which is not suitable for large-scale real-world 

systems. 

Y. C. Lee and A. Y. Zomaya [10] proposed two energy-conscious task consolidation 

heuristics, which aim to maximize resource utilization and explicitly take into account both 

active and idle energy consumption. 

In [11], A. Verma1 et al. propose a model for VM placement considering energy and 

migration cost. Different with this work, we do not estimate the cost of VM migration 

because it is complex and cannot be accurately pre-defined [2]. 

3. System Model and Problem Formulation 

3.1. Control loop for self-adaptive resource management. The control loop is widely 

used in resource management of data center [5]. Such type of period controlling method 

can continually optimize the system performance on the basis of the current state of the 

system. Each round of the controlling is comprised of four sub-phases. The first phase is 

that it continually collects the information data of the system, commonly including service 

workload, quality of service and resource utilization of each server etc. This information 

will be used for making decisions of resource management. The second phase is that it 
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forecasts workload of each service during next controlling round [12]. The methods which 

perform well in this work include Kalman filter and data regression. The third phase is 

analyzing the information and calculating the new solution for resource allocation and VM 

placement. It aims to optimize the resource provisioning without SLA violation. This work 

has two objectives of optimization, i.e. reducing the entire energy consumption and the VM 

placement change. The VM placement changes are caused by VM creation, migration and 

destroy. The final phase is command execution. 

3.2. Energy model. A recent study [13] has indicated that the energy consumption of 

server is approximately linear to the CPU utilization. This result is applicable in both DVFS 

enabled server and DVFS disabled server. The reasons behind this are (1) the modern 

server is equipped multi-core processor or multi-processor thus the CPU is the major 

energy consumer in servers; (2) although CPU can adjust its frequency to lower the power 

consumption, the number of frequency‟s states is limited moreover DVFS is not applied to 

other server components apart from the CPU. 

Furthermore, the study has shown that on average, an idle server consumes 

approximately 70% of the power consumed by the server running at the maximal speed. 

This result proves that dynamic power management technique is effective which set idle 

servers to the sleep mode to reduce idle power. 

In this work, we use the power model [13] defined in (1) 

    max max1P u k P k P u       (1) 

The parameter  P u denotes current power consumption, maxP is the maximal power 

consumed when the utilization is maximal, u is the resource utilization and k is the 

fraction of power consumed by idle server. 

Based on the power model, we can define the energy model in this work (see formula 

(2)). 

   
1

0

t

t
E P u t dt   (2) 

3.3. Problem Formulation. In section 3.1, we have introduced the control-loop-based 

dynamical resource management technique. Our work just focuses on the third step, namely 

consider that workload of each service during the next time period has been forecasted then 

re-allocate resources to services. Moreover, we consider that if current resource cannot 

satisfy the requirement, we need to increase the total capacity (i.e. turned on servers) and if 

the resource is abundant, we also consider turning off part of them to save energy. In 

addition, the accuracy of forecasting is not considered in this work. 

The work considers that there are  service and n  active servers in the system. The 

resource allocation solution is described by matrix L  where ,i jL  denotes the resource 

allocated to service i on server j. We use matrix  denote the placement of service‟s VM 

instance. It is obvious that the matrix I  is dependent on the matrix L (this will be 

explained in later problem formulation). Furthermore, we assume server in the system is 

homogeneous and define the resource capacity of each server is C  and the resource 
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required by service i during next time period is
iR . In addition, we should consider the basic 

resource used for VM running. This is denoted as  . 

The aim is to find a new resource allocating solution which can minimize the total 

energy consumption and minimize the placement change of services‟ VM instances 

(including VM start/stop/migration) meanwhile satisfy all the constrains, e.g. the resource 

requirement of services must be satisfied and the resource allocation on each server cannot 

exceed the resource capacity. 

Before the mathematically formulate the problem, we need to give some explanation: (1) 

we assume the resource (i.e. server) is infinite, this is reasonable because the size of current 

data center is huge and the resource management framework adopted by this work support 

dynamically scale the domain which is the second -level managing environment. (2) We 

just consider CPU in this work and it can be easily extent to multi-dimension resource. 

The problem is formulated as follows: 
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 (3) 

Here, the symbol ,i jI   denotes current placement. The first objective denotes 

minimization of energy consumption. The second objective denotes minimization of 

placement change of services‟ VM instances. Constraints 1~4 denote the relationship 

between matrix I  and L  moreover the resource allocated to each VM instance must be 

higher that a given basic resource requirement  . This constraint also avoids too much VM 

instances running on a same server. Constrain 5 means the sum of allocating resource on 

each server cannot exceed the capacity. Constraint 6 means the allocating resource apart 

that for VM running must satisfy the service„s resource requirement. The final constraint 

keeps each service has at least one VM instance in the system. 
 

4. Algorithm. We can see that the problem is a two-objective combinatorial optimization 
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problem with multiple constraints. Such types work has been proven NP hard and we 

cannot find the optimal solution in polynomial time. In this work, we study an existing 

works [14] [16] [17] and propose an approximate algorithm which iteratively optimize the 

solution based on a max-flow and min-cost-flow method (called NFT-DRP). 

The algorithm is described as follows.  
 

Algorithm：Network-Flow-Theory-based Dynamical Resource Provisioning (NFT-DRP) 

0. Input: A set of servers, current VM placement matrix P, resource demand D 

1. Output: resource provision solution R 

2. |  N = estimate_upper_bound_of_required_servers(D); 

3. |  P =select_a_set_of_servers(N); 

4. |  while true 

5.       |  R = search_resource_allocation_based_on_max_flow(P, D);  

6.       |  if satisfy_the_demand(R) == true   break; 

7.       |  R = optimize_solution_based_on_min_cost_flow(R ); 
8.       |  R = allocate_resource to_residual_demand_by_heuristic (R, D); 

9.       |  if satisfy_the_demand(R) == true   break; 

10.       |  P = cancel_an_arc_from_graph(P); 

11. |  end 

12. |  turned_off_unused_servers(R); 

13. |  return R; 

 

At first, the algorithm calculates the upper bound of required servers. Existing work of 

bin-packing problem has indicated that heuristic method (e.g. FFD or BFD) uses no more 

than 11 9 1OPT   bins (where OPT is the number of bins given by the optimal solution) 

[15]. 

Then, the algorithm selects a set of servers for resource allocation. If required servers is 

more than current servers, the system will turn on (N-N‟) servers which are in sleep mode 

or other energy saving mode (N means required servers and N‟ means current running 

servers). If required servers are less than current servers, the system will turn off (N‟-N) 

servers to save energy. The server selection follows an intuitive idea which is shown in the 

formula below. 
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 (4) 

We can get an appraisal value for each server by this formula. It is comprised of two 
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parts. The left part estimates the potential of services which are hosted in server j. High 

potential means it requires more resource in the next period so we cannot turn off the 

corresponding server to increase the efficiency in next step meanwhile decrease the chance 

of VM placement change. The right part calculates how many VM hosted on server j. The 

more VM are, the lower the value is. It can decrease the number of VM placement change. 

In addition, parameter a  and b  represent the weight of two parts. 

After the selection, algorithm enters into iteration and it will return if all the demand is 

satisfied. In each round, the algorithm search an initial solution for resource allocation 

based on current VM placement matrix P and resource demand D. This progress is based on 

the maximum flow method (we adopt the basic Ford-Fulkerson algorithm in this work). 

Then, we adopt a good idea from Tang‟s work [15] which use the minimum cost flow to let 

free resource centralized which can make the algorithm more efficient. After that, we apply 

a FFD heuristic method to dispatch the residual resource demand for suitable servers. If 

there is no residual resource demand in the system, namely all the resource demand is 

satisfied, the algorithm returns the solution, else it will cancel an arc from the graph (it 

means remove a VM from current system) and compete again. The worst case is that the 

flow degenerates to the simplest, namely there is no edge in between the service nodes and 

server nodes. 
 

5. Experimental Results and Discussion. This work adopts the resource management 

model proposed in [6]. Thus each local manager is responsible for dynamic resource 

provision and VM migration/start/stop. As the targeted environment is an IaaS, a Cloud 

computing environment that is supposed to create a view of infinite computing resources to 

users, it is essential to evaluate the proposed strategy on a large-scale virtualized data center 

infrastructure. However, it is extremely difficult to conduct repeatable large-scale 

experiments on a real infrastructure, which is required to evaluate and compare the 

proposed algorithm to different algorithms with the same conditions. Therefore, a 

simulation has been chosen to evaluate the proposed method. We design a series of 

experiments in simulation. In these experiments; first of all, we test the feasibility of the 

proposed method by two groups of different resource request. Secondly, we compare the 

performance of the proposed method results with existing works. Finally, we test the 

computational overhead by groups of data with different size. We adopt Matlab 2012a to 

perform the simulation and the machine is equipped with Intel i5-2300 CPU 2.8GHz, 3G 

RAM. 

5.1. Availability. First of all, we plan to test the availability of the proposed method with 

two groups of data (see figure 1 and 2). These two kinds of data are randomly generated 

and the difference between them is; the resource demand in the first group of data is not 

severely fluctuated and the second group of data is contrary to first group of data i.e. 

resource demand fluctuates dynamically. In this experiment, we compare the proposed 

method with an existing heuristic method in literature [6]; in this author just consider the 

energy efficiency. 
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FIG. 1 DATA SET (A)                            FIG. 2 DATA SET (B) 

 

The experimental results are shown in figure 3~6. It can be seen from Figure 3, energy 

consumption of three methods by using a first group of data (In this experimental result we 

don‟t used any energy saving module in system thus servers will not be turned off even if 

they are idle) and figure 4 shows energy consumption of three methods by using a second 

group of data. It can be seen from the figure that our method consumes slightly less energy 

than heuristic method in both experiments. 

Figure 5 and 6 show the results of VM placement change‟s time of two methods (our 

method and heuristic). It can be seen from figures that heuristic method generates result far 

more VM placement change than our method (about 5 times in the first experiment and 2.5 

times in the second experiment). Heuristic„s VM placement change curve is similar to the 

data‟s curve, namely VM placement change time depends on the total resource demand on 

the system. On the contrary with heuristic, VM placement change in our method is affected 

by specific data. We explain this conclusion by analyzing the data. In our experiment, the 

data (i.e. Resource demand of each service) follows a Poisson distribution which is 

reasonable and the average value follows uniform distribution. The difference between two 

data groups is the time interval of average value change, e.g. the first group changes 

average value every 5 rounds and the second one changes every 2 rounds. Therefore, we 

can be seen, that the VM placement change time has sharply grown every 5 rounds. 

Moreover, in second experiment, due to the resource demand of each service change 

quickly, the mean value of VM placement change time increases. This result is consistent 

with our prediction. It can be believed that, in a real system, the VM placement change may 

be much less than the designed experiment because, most of the time, the changes of 

services‟ resource demand does not greatly fluctuate. 
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FIG. 3 COMPARISONS OF ENERGY CONSUMPTION (A)      FIG. 4 COMPARISONS OF ENERGY CONSUMPTION (B) 

    
FIG. 5 COMPARISONS OF VM PLACEMENT CHANGE(A)    FIG. 6 COMPARISONS OF VM PLACEMENT CHANGE(B) 

 

5.2. Efficiency. We compare the proposed method with heuristic with respect to the 

difference in energy efficiency, and as well as the VM placement change. We achieve this 

aim by applying ten groups of data with different size. The number of services in data 

increases from 10 to 100. The experimental results are shown in figure 7 and 8. It can be 

seen clearly from the figures, the proposed method‟s energy saving efficiency is better than 

heuristic method. On the other hand, in the VM placement change, the proposed method is 

much better than heuristic. When we used just 10 services in experimental data, then 

average VM placement change number of our method is 2, while this number is 25 for 

heuristic. Furthermore, when there are 100 services in experimental data, then average VM 

placement change number of our method is 51 and for the heuristic this number is nearer to 

200. 
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FIG. 7 COMPARISONS OF ENERGY CONSUMPTION          FIG. 8 COMPARISONS OF VM PLACEMENT CHANGE 

 

5.3. Computational overhead. Finally, we test the computational overhead of the 

proposed algorithm. The simulation is carried out 12 times and the data size (number of 

services) is incremental in each round, i.e. 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200. 

The results are shown in figure 9. It can be seen from the figure, the computational time is 

about 70 seconds when the data set contains 100 services, furthermore, the computational 

time is up to 238.77 seconds when there are 150 services in the experimental data and 

finally computational time is 598 seconds when there are 200 services in the experimental 

data. Because, in the resource management model, resource provisioning solution need to 

re-compute every few minutes, this result can provide clear guideline when apply this 

method to real system. 

 
FIG. 9 COMPUTATIONAL OVERHEAD OF NFT-DRP 

6. Conclusion. In this work, we reconsider the dynamic resource provision in the cloud 

data center. We do not only consider the energy efficiency which is the most concerned 

issue for cloud providers, but also consider the overhead of VM placement change which 

cannot be ignored in the cloud systems. We model the problem and propose a 

network-flow-theory-based approximate optimal algorithm. A series of simulations are 

performed to test the availability, efficiency and computational overhead of the proposed 
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method. The results show that it can greatly reduce the VM creation, destruction and 

migration operation compared to the existing method. 
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