International Journal of Knowledge www. iikilp.org
and Language Processing KLP International ©2013 ISSN 2191-2734
Volume 4, Number 1, 2013 pp. 26-34

Implementation of Chinese Resource Grammar in Grammatical Framework

Chen Peng
Beijing Language and Culture University
No.15, Xueyuan Road, Haidian District, Beijing, China
chenpeng@blcu.edu.cn

Received February 2013; revised February 2013

ABSTRACT. 77%is paper describes a Chinese resource grammar implemented in
Grammatical Framework (GF), a programming language for multilingual grammar
applications. GF djfferentiates between concrete grammars and abstract grammars.
translation among concrete languages is provided via abstract syntax trees. Thus the
same concrete grammar Is effectively used for both language analysis and language
generation. Furthermore, GF differentiates between general-purpose resource grammars
and domain-specific application grammars that are built on top of the resource grammars.
The GF resource grammar library (RGL) currently supports nearly 30 languages that
implement a common APL. We briefly describe the grammatical features of Chinese and
lustrate how those features are handled in the multilingual framework of GF, especially
noun phrase, verb phrase, adjective phrase, clause and question clause. We also ftest
Chinese resource grammar, and briefly discuss the limitations of the Chinese resource
grammar and potential recent and long-term improvements.

Keywords: computational grammar; Chinese language generation; Grammatical

Framework

1. Introduction. The application background of this paper is automatic translation between
natural language and artificial language, it is aimed at semantic parsing of Chinese and
natural language generation in Chinese. We describe an implementation of Chinese
resource grammar in Grammatical Framework (GF)[1], which is applied in language
analysis and language generation.

The Chinese Language which is one of the branches of Sino-Tibetan family of languages
is one of wildly used languages. Our implementation of Chinese resource grammar is
different from other corpus like Comprehensive Language Knowledge Base developed by
Institute of Computational Linguistics at Peking University[2] or HowNet developed by
Dong Zhendong[3]. It focuses on grammar, especially at syntax level and belongs to syntax
rules library. Since GF is grammar formalism based on dependent type theory[4], Our
implementation of Chinese resource grammar library can be used as a research platform of

Chinese grammar formalism.

2. Grammatical Framework and resource grammar. GF is a grammar development tool
and a grammar formal theory based on type theory, which implements a kind of program
language and a kind of software platform for writing grammar. GF differentiates between
abstract syntax and concrete syntax. The abstract syntax is language independent and is
common to all languages in GF grammar library. It is based on common syntactic or
semantic constructions, which work for all the involved languages on an appropriate level
of abstraction. The concrete syntax is language dependent and defines a mapping from
abstract to actual textual representation in a specific language. GF uses the term ‘category’
to model different parts of speech (e.g verbs, nouns adjectives etc.). An abstract syntax
defines a set of categories, as well as a set of tree building functions. Concrete syntax
contains rules telling how these trees are linearized. Separating the tree building rules
(abstract syntax) from linearization rules (concrete syntax) makes it possible to have
multiple concrete syntaxes for one abstract syntax, which makes it possible to parse text
in one language and translate it to multiple languages.

As a functional programming language for writing grammars, GF provides some data
types and data structures.

TABLE 1. major syntax elements of GF

Keywords | Functions FExamples
cat Defining a category in abstract syntax cat
Quality, Kind
Jun Defining function signature in abstract syntax | fiun
Mod . Quality -> Kind -> Kind
lincat Linearizing a category in concrete syntax, | lincat
corresponding with cat in abstract syntax Kind = /s . Number => Str} ;
lin Linearizing a function in concrete syntax, | lin
corresponding with fun in abstract syntax Mod guality kind =
7’5 =8 => quality.s ++ kind.s /' nt ;

GF has some forms of judgements for defining parameters, tables and records.
1. GF has a form of judgement for defining parameters. For example, we define a
parameter type, Number, including singular and plural:
param Number = Sg | P1
2. GF has a form of judgement for defining tables. For example, we define a table type:
Number=>Str. Object of table type is table, for example, table {Sg => “Pizza” ; PI
=>“Pizze”} is an object of table type Number=>Str. The value assigned to a parameter
can be selected by the operator(!). as in the example below which GF computes into the
value “Pizza”
table {Sg => “Pizza” ; Pl=>“Pizze”}! Sg
3. GF has a form of judgement for defining records. For example, {s:Str; n:Number}, for
operating a field of record, we need the operator (.),
{s =“theses” ; n="Pl}.n
Figure 1 is a demonstration of abstract syntax and English & Chinese concrete syntax of
“Foods”.

27

abstract Foods = {

flags startcat = Comment ;

cat
Comment ; Item ; Kind ; Quality ;

fun
Pred : Item -> Quality -> Comment ;
This, That, These, Those : Kind -> Item ;
Mod : Quality -> Kind -> Kind ;
Wine, Cheese, Fish, Pizza : Kind ;
Very : Quality -> Quality ;
Fresh, Warm, Italian,
Expensive, Delicious, Boring : Quality ;

(a) abstract syntax of Foods

concrete FoodsEng of Foods = {
lincat
Comment, Quality = {s : Str} ;
Kind = {s : Number => Str} ;
Item = {s : Str ; n : Number} ;
lin
Pred item quality =

{s = item.s ++ copula ! item.n ++ quality.s} ;

This = det Sg "this" ;
That = det Sg "that" ;
These = det PI "these" ;
Those = det P1 "those" ;
Mod quality kind =
{s =¥¥n => quality.s ++ kind.s ! n} ;
Wine = regNoun "wine" ;
Cheese = regNoun "cheese" ;
Fish = noun "fish" "fish" ;
Pizza = regNoun "pizza" ;
Very a = {s ="very" ++a.s} ;
Fresh = adj "fresh" ;
Warm = adj "warm" ;
Italian = adj "Italian" ;
Expensive = adj "expensive" ;
Delicious = adj "delicious" ;
Boring = adj "boring" ;
param
Number = Sg | Pl ;
oper
det : Number -> Str ->

concrete FoodsChi of Foods = {
lincat
Comment, Quality = {s : Str} ;
Kind = {s : Number => Str} ;
Item = {s : Str ; n : Number} ;
lin
Pred item quality =

This = det Sg "iX";

That = det Sg "Hk";

These = det P "ix£E" ;

Those = det P1 "HfLL" ;

Mod quality kind =

{s = ¥¥n => quality.s ++ kind.s | n} ;

Wine = regNoun "if§" ;

Cheese = regNoun "J/5F&" ;

Fish = noun "fish" "f" ;

Pizza = regNoun "$ifj=" ;

Very a= {s="9EH" ++as} ;

Fresh = adj "Hrfifny" ;

Warm = adj "{RREH" ;

Italian = adj "B AFI=AY" 5

Expensive = adj "F 511" ;

Delicious = adj "JEBEAY" ;

Boring = adj "MEFZAY" ;
param

Number = Sg | P1;

{s = item.s ++ copula ! item.n ++ quality.s} ;

{s : Number => Str} -> {s : Str; n : Number} =
¥n,det,noun -> {s =det ++ noun.s ! n;n=n} ;

noun : Str -> Str -> {s : Number => Str} =

¥man,men -> {s = table {Sg => man ; P1=>men}} ;
regNoun : Str -> {s : Number => Str} =

¥car -> noun car (car +"s") ;
adj : Str > {s: Str} =

¥cold -> {s =cold} ;
copula : Number => Str =

table {Sg=>"is" ; P => "are"} ;

oper
det : Number -> Str ->
{s : Number => Str} -> {s : Str; n : Number} =
¥n,det,noun > {s =det ++ noun.s ! n;n=n} ;
noun : Str -> Str -> {s : Number => Str} =
¥man,men -> {s = table {Sg => man ; P1=>men}} ;
regNoun : Str -> {s : Number => Str} =
¥car -> noun car (car +"s") ;
adj : Str > {s: Str} =
¥cold -> {s =cold} ;
copula : Number => Str =
table {Sg =>"is" ; P1=>"are"} ;
1

(b) English and Chinese concrete syntax of Foods
FIGURE 1. An example of GF grammar

GF differentiates not only between abstract syntax and concrete syntax but also between
general-purpose resource grammars and domain-specific application grammars. Resource
grammars are general purpose grammars[5] that try to cover the general aspects of a
language linguistically and whose abstract syntax encodes syntactic structures. Application
grammars, on the other hand, encode semantic structures, but in order to be accurate they
are typically limited to specific domains. However, they are not written from scratch for

each domain, but they use resource grammars as libraries [6].

28

The GF Resource Grammar Library (RGL) is a set of natural language grammars
implemented in GF. These grammars are parallel in a strong sense: they are built upon a
common abstract syntax, i.e. a common tree structure. Individual languages are obtained
via compositional mappings from abstract syntax trees to feature structures specific to each
language. The grammar defines, for each language, a complete set of morphological
paradigms and a syntax fragment comparable to CLE (Core Language Engine)[7]. The
current coverage is twenty-nine languages: Afrikaans, Amharic, Arabic, Bulgarian, Catalan,
Danish, Dutch, English, Finnish, French, German, Hindi, Interlingua, Japanese, Italian,
Latin, Latvian, Nepali, Norwegian bokmal, Persian, Polish, Punjabi, Romanian, Russian,
Sindhi, Spanish, Swedish, Thai, Turkish, Urdu.

3. Syntax. Chinese is a typical isolated language and lack inflections, so when we build
Chinese resource grammar library, syntax fragment is taken into account, especially noun
phrase, verb phrase, adjective phrase, clause and question clause.
3.1. Noun phrases (NP). According to internal combination of noun phrase in modern
Chinese, noun phrase can be divided into three types of classical combination, including
dozens of kinds of combination schemas[8-9]. For simplicity, noun phrase is linearized as a
string in GF:
lincat NP = {s : Str}

There are more than twenty generation rules of generating NP in RGL[10], combining
quantifier, determiner, pronoun with noun to generate NP.

In generation of NP in Chinese RGL, involving determiner is more complex, type of
determiner is as follows:

param DetType = DTFull Number | DTNum | DTPoss

DetType represents type of determiner, including full name determiner, quantity
determiner and pronoun determiner. According to the type of determiner, noun phrases can
be generated as follows:

DetCN det cn = case det.detType of {

DTFull Sg => {s =det.s ++cn.c ++cn.s}; --thishouse
DTFull P1=> {s =det.s ++ xie s ++cn.s} ; -- these houses
DTNum => {s=det.s ++ cn.c ++cn.s}; --(these) five houses
DTPoss => {s =det.s ++ cn.s} -- our (five) houses
}
3.2. Verb phrases (VP). In Chinese RGL, verb phrases are represented as a record with
three fields.

VP = {verb : Verb ; compl : Str ; prePart : Str}
where verb is verb category, compl represents complement of VP, prePart represents
auxiliary verb of VP.
At the level of verb, there are five aspects of verb, including progressive aspect,
continuous aspect, perfect aspect, future and past. In GF representation, we define aspects

of verb as parameter:
Aspect = APlain | APerf | ADurStat | ADurProg | AExper

29

When we generate verb, aspects of verb are taken into account, and some relevant adverb

or auxiliary verb are added.
regVerb : (walk : Str) -> Verb =\v ->mkVerb v " J" "&" "{E" """ "K"

There are more than thirty generation rules of generating NP in RGL[10], covering
subject-predicate phrase, verb-object phrase, verb-complement phrase, adverbial-verb
phrase, coordinative phrase, etc[9]. For example, through combination VP with adverb, it
can generate verb phrase modified by the adverb.

AdvVP vp adv = case adv.advType of {
ATManner => insertObj (ss (deVAdv_s ++ adv.s)) vp ;
_ =>insertAdv (ss (zai_V.s ++ adv.s)) vp

}
AdvType = ATPlace | ATTime | ATManner

where AdvType represents type of adverb, ATPlace is adverb of position, ATTime is time
adverb and ATManner is manner adverb.
In generation of VP in Chinese RGL, “ba” phrase is special, it’s generation rules are as
follows:
Slash2V3 v np = insertAdv (mkNP (ba_s ++ np.s)) (predV v) ** {c2 = v.c3 ; isPre = False}
Slash3V3 v np = insertObj (mkNP (appPrep v.c3 np.s)) (predV v) ** {c2 =v.c2 ; isPre =
True}
3.3. Adjective phrases (AP). In Chinese RGL , adjective phrases are represented as a
record with two fields.
AP = {s : Str; monoSyl: Bool}
where s is kernel word and monoSyl represents AP is monosyllabic or not.
There are more than ten generation rules of generating AP in RGL[10], covering
adverbial-verb structure, predicate-complement structure, etc.
Cite generation of comparative adjective phrase for example, it’s signature at abstract level
is as follow:
fun ComparA : A -> NP > AP
it’s corresponding implementation at concrete level is:
ComparA a np = complexAP (than_s ++ np.s ++ a.s)

3.4. Clauses (CI). In Chinese RGL , clauses are represented as a record with three fields.
Clause : Type = {
s : Polarity => Aspect => Str ;
np : Str;
vp : Polarity => Aspect => Str
!
where np and vp represent noun phrase and verb phrase respectively, clause has variable
polarity and aspect. Keep np and vp separate is to insert interrogative adverb as needed.
Polarity represents polarity of clauses and Aspect represents aspect of clauses (Chinese is a
language without tense, aspect is not displayed directly to the verb form and is expressed by
time Adverbs [11]).
There are more than thirty generation rules of generating Cl in RGL[10].
Cite most simple generation of clause for example, it’s signature at abstract level is as

30

follow:
fun UseCl : Temp -> Pol -> Cl1 -> S

It’s corresponding implementation at concrete level is:
UseCl tpecl={s=cls!pp!tt}

3.5. Question Clauses (QCI). In Chinese RGL , question clauses are represented as a
table type.
QCl = {s : Polarity => Aspect => Str}

where Polarity represents polarity of question clause and Aspect represents aspect of
question clause.

There are almost thirty generation rules of generating QCI in RGL[10].

Cite most simple generation of clause for example, it’s signature at abstract level is as
follow:

fun QuestCl: C1 — QCI

it’s corresponding implementation at concrete level is adding a “ma” at the end of

question clause:
QuestCl cl = {s=\\p,a=>cl.s ! p ! a++ question_s}

However this clause still has variable tense and polarity which is fixed at sentence level
e.g
fun UseQCl : Temp -> Pol -> QCl > QS
Other forms of question clauses include clauses made with interrogative pronouns (IP),
interrogative adverbs (IAdv), and interrogative determiners (IDet), categories. Some of the
functions for creating question clauses are:
QuestVP : IP -> VP > QCl
QuestlAdv : IAdv > Cl > QCl
3.6. Miscellaneous. There are big differences between the Indo-European languages and
Chinese in structure words, numeral words, etc. For example, the conjunction “and”
implemented in Chinese RGL need distinguish parts of the connection is “phrases” or
“sentence”. According to the parts of the connection, different conjunctions are selected.
and Conj = {s = table {
CPhr CNPhrase => mkConjForm "f1" ;
CPhr CAPhrase => mkConjForm "[f]" ;
CPhr CVPhrase => mkConjForm " X" ;

CSent => mkConjForm "3 H."

} s
where
ConjForm = CPhr CPosType | CSent;
CPosType = CAPhrase | CNPhrase | CVPhrase ;
ConjForm represents type of connection: “Phrases” or “Sentences”. CPosType represents

subtype of “Phrases”: AP or VP or NP.

4. Example. As an example consider the translation of following sentence from English to

31

Chinese, to see how our implementation works.
“if the man is old then the woman is old”
Figure 2 shows the parse tree for this sentence (Figure 2 is automatically produced by
running command “p -lang=Eng “if the man is old then the woman is old” | vt

—view=open”in GF).

PhrUtt : Phr

PR

NoPConj : PConj

Conj5:S

UttS : Utt

NoVoc : Voc

/N

if_then_Conj : Conj

BaseS : ListS

PN

UseCl: S UseCl: S
TTANt : Temp PPos : Pol PredVP : CI TTAnNt : Temp PPos : Pol PredVP : CI
TPres : Tense ASimul : Ant DetCN : NP UseComp : VP TPres : Tense ASimul : Ant DetCN : NP UseComp : VP

e |

DetQuant : Det UseN : CN CompAP : Comp
DefArt : Quant NumSg : Num man_N : N PositA : AP
old A: A

e \

DetQuant : Det UseN : CN CompAP : Comp

] \ |

DefArt : Quant NumSg : Num woman_N : N PositA : AP

old A: A

FIGURE 2. The parse tree of “if the man is old then the woman is old”

The nodes in this tree represent different categories and its branching shows how a
particular category is built from other categories and/or leaves (words from lexicon). In GF
notation these are the syntactic rules which are declared at abstract level.

Table 2 illustrates main category building of ”’if the man is old then the woman is old”.

TABLE 2. Category building type signature

Category | Type signature Remark
Phr Sun Phrlit: PConj -> Utt -> Voc -> | Phrase is builded from conjunction ,utterance.

Phr
%13 Jun UntS S -> Utt Ultterance is builded from Sentence
S Jun ConyS: Cony -> /8] -> 8 Sentence is butlded from conjunction of some sentences
S Jun UseCl: Temp -> Pol -> C] -> | Sentence is builded from polarity, clause

S
c/ Jun PredVP: NP-> VP -> C/ Clause is builded from noun phrase and verb phrase
NP Jfun DetCN: Det -> CN -> NP Noun Phrase is builded from determiner, proper noun
VP Jun UseComp.: Comp -> VP Verb Phrase is builded from copula

In GF, we linearize the parse tree to Chinese implementation of RGL. The result of

32

linearization is the translation of ” if the man is old then the woman is old” to Chinese (in
GF , by running command ““i english/LangEng.gf chinese/LangChi.gf”, we imports English
and Chinese RGL, and then run command “ p -lang=Eng “if the man is old then the woman
isold” |17):

“UERFNZAZHIIR A L NREZH”

The translation procedure can be demonstrated as figure 3.

E nelish Parse Linearize Chi
nglis: mese
“if the man is old then the woman is old” > Parse tree > DT TN RN POIN E K

FIGURE 3. The illustration of translation procedure
Additionally, we can show the word alignment of the two sentences. (In GF, running
command “p -lang=Eng “if the man is old then the woman is old” | aw —view="eog””’)

if
m R { the
8 A » man
= is
z old
ig] then
B 4 the
T A woman
= is
£ [—» od
i

FIGURE 4. Word alignment

5. Experiment and Test. We has implemented around 80 categories and 200 construction
functions in Chinese resource grammar. For test our implementation, we experiment as

follow procedure:

1. Run GF

2. Import English and Chinese resource grammar: i english/LangEng.gf
chinese/LangChi.gf

3. Parse English sample sentences, and translate them to Chinese sentences, for example,
p -lang=Eng “if the man is old then the woman is old” | 1

4. Evaluate the automatically translated Chinese sentences manually and subjectively, if
the Chinese sentence is grammatically correct and agree with Chinese practice well,
then the translation is evaluated as “good”. If the Chinese sentence is grammatically
correct and agree with Chinese practice basically, then the translation is evaluated as
“soso”. If the Chinese sentence is not grammatically correct, then the translation is
evaluated as “bad”.

We select 450 English sample sentences covering almost all categories for testing. The
result is as table 3.

33

TABLE 3. evaluating result
Number of Samples | Number of “‘gcood”” | Number of “soso” | Number of “bad”’
450 338 80 32

According to the test, we find that the percentage of “good” is just 75%, and he
percentage of “bad” is 7%. The result is not ideal, major reason is that we don’t handle
Chinese characteristics very well, just like word order, functional word and all kinds of
complex and flexible phrase structure.

6. Conclusions. We have implemented Chinese resource grammar in Grammatical
Framework, which is applied in language analysis and language generation. We have
applied it to automatic translation system between Object Constraint Language and Chinese.
However, as we mentioned earlier, the implementation does not handle Chinese
characteristics very well, which will be our recent work. In addition, automatic translation
between natural language and artificial language, improving GF and abstract syntax in RGL,
integrating semantic checking based on montague grammar are our future work direction.
GF is a grammar formalism based on type theory and a software library and software
development platform. Our implementation of Chinese resource grammar in RGL can
promote multilingual translation, and more importantly can become a research platform and
comparative study platform of Chinese grammar characteristics.
Acknowledgment. This work has been supported by the Fundamental Research Funds for
the Central Universities (Approval number: 11JBB036 , 12YBGO04 , XK201203).The
author would like to thank Aarne Ranta and Zhuo Lin Qiqige, our work is based on their
work, and Our implementation is instructed by Aarne Ranta. Thank the anonymous
reviewers for their suggestions on how to improve this paper.

REFERENCES

[1] Ranta, A. (2011). Grammatical Framework: Programming with Multilingual Grammars. Stanford: CSLI
Publications.

[2] Yu Shiwen, Xue-Feng Zhu. Detailed Explanation of Modern Chinese Grammar Information Dictionary
(Second Edition) [M] Beijing: Tsinghua University Press, 2003.

[3] Dong Zhendong Dong Qiang. HowNet see website: http://www.keenage.com/ the, 2013.2.

[4] Peter Ljungldf. Expressivity and complexity of the Grammatical Framework. GOTEBORG university.
2004.

[5] Ranta A. The GF Resource Grammar Library A systematic presentation of the library from the linguistic
point of view. to appear in the on-line journal Linguistics in Language Technology, 2009.

[6] Ranta A. Grammars as Software Libraries. From Semantics to Computer Science, Cambridge University
Press, Cambridge, pp. 281-308, 2009.

[7] Alshawi, H. 1992. The Core Language Engine. Cambridge, Ma: MIT Press.

[8] Zhan Weidong, the study of modern Chinese phrase structure rules for Chinese information processing.
Peking University doctoral dissertation in 1999.

[9] Zhu Dexi grammar handouts Commercial Press in 1982.

[10] GF Resource Grammar Library.http://www.grammaticalframework.org/lib/doc/synopsis.html.2013.2

[11] Qu Chengxi, the Chinese cognitive function syntax, Harbin: Heilongjiang People's Publishing House,
2005.

34

