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ABSTRACT. An automated machine learning system also referred to as automated
ML or AutoML, is the process of automating the tedious tasks of machine learning model
development like adjusting hyperparameters to improve development efficiency. Code
parsing and reuse technology is the core of AutoML. This paper conducts an overview on
the underlying technologies such as code reuse, code understanding, code representation,
and code retrieval, thus summarizing both the challenges and future research directions
of business process-oriented code parsing and reuse technologies. The study shows that
the current code structure parsing and reuse technologies cannot meet the requirements
of business process-oriented needs, since the existing algorithm platforms have their
limitations, such as inflexible model calls and inadequate code self-assembly choices.
Future research needs to focus more on the implicit structure and data flow of code, the
function calls, and the standardization of data between algorithm components, and to
model the dependency between algorithm components, to improve the accuracy and
efficiency of code reuse.
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resource structuring, Automated machine learning algorithm platform

1. Introduction

Nowadays, machine learning has important applications in the fields of automatic
speech recognition, self-driving, intelligent retrieval, question answering systems,
intelligent documents, automatic presentations, etc. This relies on the construction of
well-performing machine learning pipelines, and traditional construction methods require
both profound data scientists with statistical knowledge and domain experts with long-term
experience in specific fields to build corresponding machine learning algorithms ! . This
process often requires multiple rounds of iterations. In addition, there is no one-size-fits-all
algorithm [?1 | and the algorithm often needs to be adjusted and improved for specific tasks
to better adapt to actual business processes.

After automated machine learning is proposed, the creation of the whole process of
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machine learning can be automated, including data use, feature selection, model design, and
optimization methods. In this context, it is particularly necessary to study the related
technologies of code self-assembly. By discussing code understanding, representation,
reuse, and retrieval technology, the study can lay a foundation for realizing code
self-assembly and promoting the further development of automated machine learning
platforms from a perspective of a business process.

2. Related Technologies for Business Process-oriented Code Analysis and Assembly

Based on its structural and semantic features, the code in the repository is retrieved
according to specific business requirements, which relies on the understanding of code
structure, and algorithm components are assembled to generate a matching algorithm
process that meets the business requirements. The essence of this process is to build a
corresponding pipeline to complete automated machine learning. In this study, generation
refers to the reuse of algorithmic code. The basis for reusing algorithmic code is the ability
to disassemble the complete code structure, which is based on the understanding of the
algorithm.
2.1 Research on Code Reuse Technology

Code reuse is a common research topic in the field of software engineering. With the
development of the Internet, code hosting sites led by GitHub have accumulated a large
amount of open-source software code, as well as a wealth of code in internal environments
such as enterprises. Although the specific projects may be different, in the software
development process, developers often encounter repetitive problems. This feature provides
the possibility for code reuse. Code reuse lis commonly applied in enterprises. Developers
implement code reuse in multiple forms for considerations of efficiency, cost, and code
accuracy. A study shows that appropriate code reuse can quickly integrate functions and
improve code accuracy. In short, code reuse can improve efficiency and reduce
development costs when developing time and resource support are both limited.

The research on code reuse at home and abroad has gone through three stages,
including the traditional code reuse stage, data mining—based reuse stage, and
deep—learning—based code reuse stage.

(1) Traditional Code Reuse Stage

In the traditional code reuse stage, developers need to manually obtain reusable code
from the Internet. In addition to source code, developers also need to pay attention to
information such as code documents, design documents, code use cases, etc., to achieve
code reuse accuracy. After obtaining the corresponding code, developers also need to make
manual changes to the code to integrate with the existing project. This method effectively
improves the work efficiency of software developers in the initial stage, but the reuse
efficiency of code cannot meet the market’s needs due to excessive dependence on the
developer's experience, high cost of obtaining code, and time-consuming tasks of query and
confirmation.

(2) Code Reuse Stage Based on Data Mining
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With the further development of the Internet, more and more developers choose to
upload their own code to code hosting websites. At the same time, a large number of
questions have been accumulated on question and answer websites like Stack Overflow. In
software development processes, it is inevitable to encounter repetitive problems, faced
with this situation, the traditional code reuse method will lead to inefficiency and problems
such as defects caused by an incomplete understanding of code structure during reuse. To
cope with this problem, code reuse technology based on big data mining came into being.

The code reuse technology based on big data mining can be divided into two
dimensions, of which one is the reuse considered from the code fragment level. In this level
of reuse process, code clone detection technology is used to detect whether there are similar
copies in the project library, through finding similar copies, analyzing their differences, and
extracting code modules and contained relationships for use in code reuse recommendation.
Lin et al. combined the cloning detection result with difference comparison technology to
detect the differences between instances, and at the same time believed that the differences
of codes can be transformed into code variable points /. On this basis, the method
analyzes the information of code change history and context, and fully explores differences
among codes or their interrelationship, to provide developers with code reuse
recommendations.

The second is the reuse of code function modules. The reuse of function modules is to
extract designs and templates with similar functions from similar code blocks. Developers
can implement specific functions for targeted needs on this basis!® . This method requires
users firstly to abstract the design model of the complete project from source code,
including the class, APIs, methods, attributes, and other information in the project.
Secondly, users need to determine the matching method of elements in the model, and
based on this, gather the matched elements into multiple sets. The last step is to abstract
based on multiple inter-set relationships and intra-set relationships to form template
elements for programs, and then the code is generated.

(3) Code reuse based on deep learning

The rapid development of deep learning in the field of natural language processing has
boosted its application in the field of code reuse recommendation. Deep learning focuses on
implicit learning methods to achieve the purpose of reuse. At present, the code reuse
recommendation method based on deep learning is mainly used in the training and
prediction stage!® . The code recommendation method based on traditional statistical
learning 1?1 and deep learning ['3'3] regards code as a sequence and applies traditional
statistical models like N-gram or deep learning models like LSTM for learning and training.
However, these research methods lack the consideration of the structural information of
code, which makes it impossible to effectively capture the relationship between
long-distance codes, and at the same time, they do not instantiate the parameters in code.
To improve this situation, DeepAPIRec, a recommendation method based on Tree-LSTM,
was developed!'® | which predicts abstract code sentences by training sentence models and
constructing parameter models to realize the instantiation of code.

2.2 Code Comprehension Technology Research
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The foundation of code reuse is code understanding and representation. Code is the
encoding of knowledge, and code understanding is learning from code the domain
knowledge. According to constructive learning theory, the process of learning and
cognition is goal-oriented or model-driven inductive abstraction[!”) . Code comprehension
techniques are usually used for two types of tasks: revealing program semantics or
optimizing programs. This study mainly focuses on code comprehension techniques to
achieve the understanding and representation of program semantics.

To achieve code understanding, the research community usually employs
reinforcement learning and stochastic compilation for hyper-optimization!'®!1°! | or borrows
concepts from natural language processing (NLP) to process manually written code. The
theoretical origin of this approach is that software corpora have statistical properties similar
to natural language corpora, and these properties can be used to build better software
engineering tools ?°!, In the contextual representation of code tokens, one of the dominant
approaches relies on lexicographical locations [*) ; while another approach mines the
structure of code using data flow graphs 2! | control flow graphs!??! 24 | abstract syntax
trees (ASTs) ?°1 | paths in ASTs 26 | or extended ASTs.

Algorithmic code contains strictly structural information, and as comprehensible
natural languages, possesses semantic information. Adequate representation of the
structural and semantic information of code is the basis for code parsing. Traditional
approaches represented by Information Retrieval (IR) usually treat code pieces as natural
language texts and model them based on tags. Kamiya and Kusumoto et al [*”1 and Sajnani
and Saini et al ?®! express codes in terms of sequences of tags or a series of tags, and apply
them to code cloning detection. In addition, latent semantic indexing (LSI, Latent Semantic
Indexing) ?°! and document topic generation model (LDA, Latent Dirichlet Allocation) [*°]
have also been applied to analyzing source code which has yielded some results?*'-32]
However, the problem with all these approaches is that they ignore the fact that code has
richer and more explicit structural information and cannot be treated as purely natural
languages or based on code characters (token) B33,

White and Tufanol*¥! et al. and Wei and Li [** showed that the contribution of syntactic
knowledge in source code modeling is much better than the results of traditional
token-based approaches. These approaches employ abstract syntax trees to represent code
and achieve effective results. The abstract language description framework represents code
fragments as trees with typed nodes 1*¢1, where primitive structures correspond to atomic
values including integers, identifiers, etc., and their nodes consist of both primitive types
and related values. Compound types contain linguistic structures such as expressions,
statements, etc., which contain constructor functions to specify the linguistic structures of
nodes of that type. AST, the abstract syntax tree (abstract syntax tree) refers to a tree
structure used to express the abstract syntactic structure of source code P71, which is widely
used in programming languages and software engineering tools. Zettlemoyer and Collins et
al B8 view AST as a lightweight version of CCG, using abstract syntax trees to depict code
structure.
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2.3 Code Representation Technology Research

The basis for computing and processing algorithmic codes using machine learning
methods is the vectorized representation of code. The vectorized representation of code
requires consideration of sequential, structural, and semantic features of code. In this
section, we study the vectorized representation of code based on the parsing and structuring
of algorithms in terms of the sequential, structural, and semantic features of code.

In traditional code search engines and extractive code generation, the representation of
code is usually done in the following ways.

1. treating all the code as natural language text and representing it. This approach can
effectively use the semantic information contained in code, but introduces more noise and
cannot exploit the structure contained in code.

2. Parsing code as an abstract syntax tree and representing it as a tree. This approach
differs from treating code as a natural language text or as a tree structure and performing
subsequent tasks such as similarity determination based only on its structure because a
large amount of semantic information is lost in this case.

3. Representing code as a collection of consecutive method calls. The function naming
best reflects the semantic information of a code component, so this approach can effectively
represent the semantic information and also filter out some of the noise contained in code
(e.g., irregular variable naming in code body, etc.). In addition, the set of method calls can,
to a certain extent, represent the a priori relationships between components in the source
code. However, this approach also ignores structural information, such as loop and
reference structures contained in code.

The keyword-based representation approach only considers the sequential features of
code and the natural language semantic information contained in the variables but does not
model the structural features of code. To represent code more effectively, it is necessary to
model both the structure and the semantic information of code. A more effective approach
to model and represent structures is graph neural network-based representation learning. As
a type of representation learning algorithm, network representation learning, is also referred
to as graph representation learning. Network representation learning represents nodes in a
network as low-dimensional dense vectors, which can maximize the preservation of
inter-node information and has good applications in tasks such as node classification, link
prediction, and community discovery#®l

Network representation learning algorithms can be specifically classified into the
following categories: 1) Matrix feature-based vector computation is an earlier algorithm
used for network representation learning, where Tang and Liul*!! introduced modularity into
loss function and eventually transformed the optimization problem into a feature vector
computation problem for a certain relational matrix. 2) Simple neural network-based
network representation algorithms are faster than the general approach and can achieve
better performance. Its representative algorithm, the DeepWalk algorithm[*?! is the first to
introduce the techniques in deep learning into the field of network representation learning,
fully applying the information of random walks in the network structure. 3) Matrix
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decomposition-based methods, the core of which is to achieve the effect of dimensionality
reduction by decomposing the relational matrix to obtain the node information. The GraRep
algorithm!®! is one representative algorithm of this kind, which decomposes the relational
matrix by SVD to obtain a network representation, and forms node representation with
higher dimensionality and stronger ideology. 4) Methods based on deep neural networks,
represented by SDNE 441 5) Community discovery algorithms, based on BIGCLAM 431 | a
coverable community detection algorithm that learns a k-dimensional vector representation
for each node in the network. 6) Network representation maintaining special properties,
whose representative—HOPE  algorithm(*! depicts each node as two different
representations, and uses the JDGSVD algorithm for dimensionality reduction of the
matrix.
2.4 Research on Code Retrieval Technology

The simplest method to search in code resource libraries is to use the tokenizer to
extract all the character tokens from source code, to index the data based on these
characters, and to use them as keywords to search. This method can perform cross-language
code retrieval and work well for codebases containing multiple language sources, but this
method cannot make good use of the semantic knowledge contained in code variables.
Besides, it cannot explore the unique grammatical knowledge in the code of various
programming languages. And it is impossible to determine whether the retrieved characters
come from the method name or the variable. Sachdev et al. [*1use the AST information of
code to extract method name, method call, enumeration, string text, and comment to form
the document of code pieces, and represent the document with trained word vectors. They
also calculate the similarity between the corresponding document representation and the
representation of the language to be queried to retrieve code from a large-scale code base,
and achieve better performance. Wehr (48] et al. used Siamese Neural Network to model the
semantic similarity of source code to obtain the semantic representation of code. Gu et al.
(491 used CODEnn to embed code and the natural language description of code together to
create a semantic representation of Java source code. CODEnn uses a recurrent neural
network (RNN) to model character token in API call sequence and method name, uses a
multilayer perceptron to model the characters of code in non-API sequence, and fuse the
output vectors of two models. By embedding the code and natural language together and
adjusting the output vector, CODEnn gives a natural language description of the code.
However, code comments are often context-sensitive, so comments may lack key
information about code semantics. Dam et al. *% used LSTM to model AST. The model
was trained in an unsupervised manner. The training task was to predict the superior node
based on the child nodes. Alon et al. P! modeled the path in AST and evaluated the vector
output of the model by predicting the method name in the code block to obtain the vector
representation of code.

In the research based on code library retrieval and extraction of code to generate code
use cases, MAPO?l and UP-MINER!®! extract method call sequences from retrieved code
fragments, mine high-frequency patterns in each category through clustering, and retrieve

56



required code use cases. GroupMiner >4 uses a graph-based approach to mine API use case
models, and relies on frequent pattern mining for use case discovery. However, this method
may produce a lot of redundant results. The MUSE proposed by Moreno et al. 53] uses a
technique based on repeated code detection to cluster code blocks and select use cases.
However, because it cannot effectively use the abstract information of the source code, it
may also cause redundant results. Kim et al. 5% expressed code fragments as AST element
vectors, clustered and sorted them according to vector similarity, and selected code use
cases from different clusters to construct an intelligent search engine for code. These
methods simplify the code modeling and also simplify the source code into method call
sequence and feature vector, which may lose part of code information, such as code control
flow, variable dependencies, etc... So, the generated code fragments may not meet the
accuracy requirement, and cannot be reused.

3 Automated Machine Learning Algorithm Platform Construction

Through automated machine learning, algorithm professionals can automate tedious
tasks such as adjusting hyperparameters, thereby improving work efficiency. Likewise,
domain experts can build machine learning algorithms that meet the characteristics of the
specific field without relying on data scientists. Even if they know little about machine
learning, non-professionals can also rely on automated machine learning tools to build
algorithms suitable for their tasks to complete corresponding work. Therefore, algorithm
platforms, as the realization carrier of automated machine learning, have received extensive
attention in the industry in recent years. In fact, the exploration of automated machine
learning algorithm platforms first began in the academic circle. The University of British
Columbia launched Auto-Weka (2013), followed by the University of Freiburg's
Auto-sklearn (2014), the University of Pennsylvania's TPOT (2015), and Auto-Keras of
Texas A&M University®"] .

In the industry, Google Cloud AutoML is a mature automated machine learning
system, covering three fields—vision, language, and structured data with products
including AutoML Vision, AutoML Video Intelligence, AutoML Natural Language,
AutoML Translation, and AutoML TablesP® . Google AutoML supports transfer learning,
model structure search, and hyperparameter search. Microsoft also launched its own
machine learning algorithm platform—Azure Machine Learning, which completes the
automated construction of machine learning algorithms through neural network architecture
search, model selection, feature extraction, hyperparameter adjustment, model compression,
and other steps 1,

Facundo Santiago!®! compares four popular automated learning platforms—Google
Cloud AutoML, Azure Machine Learning, Auto-Keras, and Auto-sklearn in his blog. In
this article, we use a table to organize his ideas!®” as follows:

TABLE 1. Comparative analysis of automated machine learning systems
| Approach | Open- | Cloud- | Tasks | Techniques | Training |
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source | based supported framework
Google CNN, RNN, | Reinforcement learning TensorFlo
Cloud No Yes LSTM for with gradient policy
AutoML classification upgrade W
Classification,
Regression,
Azure Time-series Probabilistic Matrix
Machine No Yes | forecasting, Factorization + sklearn
Learning Computer Bayesian optimization
Vision
(preview)
cwn | Bt
Auto-Keras Yes No LSTM for . Keras
classification with Network
Morphism
. . Bayesian optimization
Auto-sklearn Yes No Classzﬁca't o ;}utomatel;’ ensemble sklearn
Regression .
construction

In China, both Alibaba and Baidu have launched similar algorithm platforms. As
Alibaba Cloud’s machine learning platform, PAI provides cloud-native machine learning,
covering PAI-DSW interactive modeling, PAI-Studio drag-and-drop visual modeling, and
PAI-DLC distributed from training to the entire process of online deployment of the
PAI-EAS model [®! | Baidu EasyDL supports a one-stop Al development process including
data management, data annotation, model training, and model deployment!®?. However, the
current platforms have limited exploration depth of code self-assembly technology,
insufficient precision in indexing and parsing code pieces, and insufficient diversity of code
assembly results, which in turn leads to the inflexibility of model calls. Therefore, they
cannot achieve satisfactory performance in algorithmic intelligent retrieval, algorithmic
process self-organization, and automatic construction of the algorithmic pipeline in
response to business needs.

4 Conclusions

Existing automated machine learning platforms can free users from tedious work such
as parameter adjustment, thus improving work efficiency. At the same time, the use of
algorithm analysis and combination technology can avoid a number of human errors.
However, existing algorithm platforms all share the problem of inflexible model calls, and
they cannot customize automated algorithm construction and model selection for various
business processes. Therefore, future research needs to further decompose the algorithm to
understand its internal structure, obtain its structural information, and obtain its semantic
information through the construction of language models. In terms of code structure
analysis, the AST structure is too complex and detailed; while the CFG-based structure is
quite simple, which results in the loss of information in the unresolved process statement.
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Therefore, in the future, the code structure can be further combined with the detailed data
flow in AST and the logic control flow of CFG. The data flow of code and the function call
relationship between algorithm components should be paid more attention to. Through
modeling the dependencies between components, the hidden structure in code should be
mined. On the premise of fully analyzing algorithm structure, future research needs to focus
more on improving the efficiency and accuracy of algorithm configuration. In future work,
further study should be conducted on the normalization of data between algorithm
components and efficiency improvement of algorithm self-organization systems based on
existing automated machine learning technologies including hyperparameter search.
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