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ABSTRACT: In the context of growing multimedia data volume, how to automatically
extract and parse relevant knowledge from the Internet and build a knowledge graph
through fully automated and human-free algorithms or platforms, and then form a
systematic knowledge graph, are of great significance to improve the existing
knowledge graphs and build new domain knowledge graphs. This paper presents an
extensive survey and summary of the current state of research on multimodal data
fusion based on unsupervised learning. Starting from the development of
unsupervised learning, this paper focuses on feature learning and fusion learning of
unimodal and multimodal data, which can help readers to quickly establish the
current state of research in this field and understand the shortcomings of current
research.
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1 Introduction. As the Internet and mobile communications continue to grow, the
amount of data housed on the global Internet is growing at an explosive rate. According
to the data released by IDC, the global data volume was 10ZB in 2010, while the global
data volume has exceeded 40ZB in 2020 [1]. As the Internet develops rapidly in recent
years, the growth rate of global data volume will reach new heights. The new concept of
"Big Data" has become a research hotspot in various academic circles and has received
high attention from governments and enterprises. The growing volume of data on the
Internet provides valuable data resources for data analysis in various industries and
facilitates deeper mining of universal laws and hidden knowledge.

The development of the Internet has made the variety and scale of data grow more
rapidly, however, people cannot directly obtain a large amount of hidden knowledge
from these complicated data, and the disordered data bring difficulties for computers to
automatically identify and process data. Therefore, since Tim Berners Lee et al. [2]
proposed the concept of Semantic Web, the Semantic Web has been widely used on the
Internet. In the knowledge system of the Semantic Web, Ontology is a key concept that
represents a formal, explicit, and detailed description of a shared concept system [3].
Ontology describes all concepts and relationships between concepts in the domain,
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including the attribute relationships of concepts and the subordination relationships of
concepts. The Semantic Web gives a feasible direction for data structuring.

The rise of Web 2.0 has brought about a huge amount of User Generated Content
(UGC), making the workload of search engines increase dramatically. To solve this
problem, Google introduced the concept of Knowledge Graph (KG) in May 2012,
which organizes and presents the entities, events as well as attributes and relationships
in data in a two-dimensional graph-like structure*. The idea of "Things, not strings" is to
describe real things in the real world and to extend the relevant concepts of the
Semantic Web into more understandable and cognitive entities (Entities). In the
knowledge graph, an entity can represent an object or concept, which is a point inside
the graph, while the lines between entities represent the relationship between entities.
As an enrichment and supplement to the Semantic Web, Knowledge Graph reduces the
cost of construction and use, and it is easy to build a Knowledge Graph ontology by just
constructing a data schema and establishing various attribute information and
relationship information of the ontology. Structured knowledge graphs can help people
to better mine and acquire knowledge, and facilitate computers to automate processing.

Knowledge graphs have an important role in knowledge systems and automated
intelligent services. Therefore, how to extract relevant knowledge from massive,
complex, and heterogeneous raw data and construct a high-quality knowledge graph
have become a research focus in the academic community for many years. Many
universities and research institutions have developed proprietary automated knowledge
graph construction systems based on different models and architectures. For example, T
Mitchell et al. at Carnegie Mellon University [5] developed the fully automated
information extraction system named "Never-Ending Language Learning (NELL)",
which is a combination of four extraction subsystems: CPL, CSEAL, CMC, and RL.
The CPL system can extract knowledge through contextual parsing; CSEAL can extract
semi-structured data such as lists and tables from web pages; CMC can classify words
according to a logistic regression model and extract knowledge through morphological
features of different words; RL is responsible for logical reasoning, i.e., reasoning about
new knowledge with the help of existing knowledge base. However, as S Russell [6]
pointed out, the confidence level of the NELL system is very low and it relies heavily
on manual error correction by domain experts and removal of meaningless knowledge
systems.

The multi-source heterogeneity of big data poses a new challenge for in-depth
analysis of the data, and multimodal data is a concept that focuses on solving the
problem of diversity of big data. In early data processing work, people focus on solving
some single-kind data types, such as text information, image information, video
information, audio information, etc. However, the diversity of big data and the
increasingly sophisticated information analysis theories have led the academic
community to focus on the synergy from multiple kinds of data types to analyze the
same thing or event from multiple perspectives. Yoshua Bengio et al. [7] argue that the
learning effect of machine learning largely comes from extracting the features of data
sources, which is also known as feature learning. The key to research now is how to
extract good features from a dataset and how to evaluate these features. In Dana Lahat
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et al.'s view [8], the extraction of features from a dataset is the goal of multimodal data
fusion. Multimodal data fusion is to study how to mine multimedia data and achieve
comprehensive analysis across data types, and the core purpose of this comprehensive
analysis is "complementarity", i.e., each modality brings an irreplaceable value to the
overall analysis, thus enhancing the robustness and interpretability of the overall
analysis. However, whether it is feature extraction or feature complementarity, the basis
and key to multimodal data analysis is how to identify and align the same entities in
multimodal data.

The major contributions of this paper are listed as follows.

(1) Introduce the related research on unsupervised learning
This paper introduces the related research on unsupervised learning and introduces the
main research ideas and analysis directions of unsupervised learning, which helps
readers to quickly become familiar with the main analysis ideas of unsupervised
learning, and then apply them to multimodal data fusion analysis.

(2) Provide the current status of research on multimodal data fusion based on
unsupervised learning

Based on multimodal data feature learning, this paper introduces research related to
multimodal feature learning and multimodal knowledge fusion, and introduces several
research ideas that elaborate on different approaches, which help readers better
understand the research ideas and the current state of research on multimodal data
fusion and analysis.

(3) Summarize the shortcomings and future developments of related research

Through the elaboration and analysis of existing studies, this paper summarizes the
shortcomings of the current research on multimodal data fusion analysis based on
unsupervised learning and proposes some possible future developments to provide
readers with inspiration.

2 Overview. Knowledge graph brings the possibility of structured data analysis and
semantic retrieval. Based on structured data analyzed by knowledge graphs, search
engines can return more accurate answers instead of simple string matching. In addition,
semantic data can also improve and optimize existing automated parsing and analysis
tool services in the form of custom data sources, or assist in various complex analyses,
research, and decision support, etc., to help people at various professional levels to carry
out related work. As the study of semantic data deepens, existing data analysis
processes are becoming increasingly difficult to meet the needs of professionals' work.
The integration processing of multimodal data will become one of the research topics to
improve or extend the existing semantic knowledge system. After reading the relevant
literature, it is found that there are few studies on multimodal improvement of semantic
knowledge systems in the academic field, and most of them use modal data such as
pictures and videos to assist in the parsing and analysis of text data in a superficial way.
Since the concept of multimodal fusion was put forward, various methods have been
proposed in the academic community to realize multimodal data fusion, which can be
roughly divided into two ways: methods based on supervised learning, methods based
on unsupervised learning, and methods based on few-shot learning. In the face of
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multimodal data, most of the traditional processing methods are to manually mark the
same points among different modalities or use manual matching to divide the data of
multiple modalities into the same group. Although manual processing has the feature of
high flexibility, this approach also has its own disadvantages. For example, manual
processing usually requires high human resources and small data size, and the standards
relied on by manual processing are less transparent and difficult to be unified, etc. These
disadvantages make it only applicable to small-scale sample data, and cannot cope with
the increasingly large multimodal data. As a processing direction of multimodal data
fusion, the core of unsupervised learning is to use the implicit knowledge contained in
the data itself for learning and to mine and utilize deeper information through
continuous optimization without human intervention in the whole process. Therefore,
the research of multimodal data fusion based on unsupervised learning can help to
process multimodal data in real-time, efficiently, and quickly, so as to improve the
effectiveness of data usage and optimize decision support capability.

3 Status of unsupervised learning research. In traditional machine learning
classification, machine learning models and methods can be classified into Supervised
Learning and Unsupervised Learning, according to whether or not they require
manually labeled information. Supervised learning uses a large amount of manually
labeled data to train a model, and through the continuous input of training data and
correct label pairs, the model learns through backpropagation, and eventually gains the
ability to recognize features and relevant information in existing data, and to generalize
to unknown new data. In contrast to supervised learning, unsupervised learning does not
rely on any manual labeling information, but relies solely on the mining of features
within the data to find relationships among data samples and complete tasks based on
the relationships [9-10].

Traditional unsupervised learning is divided into two main categories: one is cluster
analysis, such as Hierarchical Clustering (HCC) [11], K-Means [12-13], etc. The other
category is dimensionality reduction analysis, such as Principal Components Analysis
(PCA) [14], Singular Value Decomposition (SVD) [15], t-SNE [16], etc. As neural
networks have entered the academy, more and more related researches have started to
combine unsupervised learning and neural networks to build new models, expecting to
achieve de-manualized and automated task processing with the help of more flexible,
unsupervised deep learning methods.
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3.1 AutoEncoder. The earliest introduction of neural networks into the field of
unsupervised learning was the AutoEncoder constructed by DE Rumelhart et al. [17]
and improved by DH Ballard [18]. The structure is shown in FIGURE 1. After
continuous research and development in the academic community, AutoEncoder has
evolved from a specific model approach to a research idea, that is, to construct a fully
automatic encoding-decoding approach for neural networks, At the same time, the
dimension of the hidden layer vector is much smaller than that of the input sample data,
and enables the hidden layer vector to contain more basic features and semantic features
of the data.

Input layer Hidden layer Output layer

FIGURE 1 The structure of AutoEncoder

Unlike PCA, the AutoEncoder can characterize both lincar and nonlinear
transformations, greatly enhancing the flexibility of the model, whose goal is to learn a
characterization function that allows the model to learn as many abstract features of the
original data as possible. AutoEncoder can be classified into the following main
categories.

(1) Denoising AutoEncoder

Denoising AutoEncoder is the most basic AutoEncoder, whose core purpose is to
extract features on the original data with certain defects or noise, and the extracted
features can repair the defects or remove the noise from the original data. Denoising
AutoEncoder is widely used in image processing and other fields, such as Stacked
Denoising Autoencoder (SDA) constructed by P Vincent et al.[19], which constructs
Denoising AutoEncoder in the hidden layer using an unsupervised pre-training
mechanism and fuses multiple Denoising AutoEncoder, improving the original
Denoising AutoEncoder constructed by A Coates et al.[20].

(2) Sparse Autoencoder

Sparse AutoEncoder aims to discover the association between the original data
features and the neural network nodes by reducing the activation of nodes in the hidden
layer[21]. This training approach can force the neural network to use fewer nodes to
accomplish the desired task, thus relying more on the features and hidden structures of
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the input sample data rather than the redundant information in the surface layer.

(3) Variational AutoEncoder

Variational AutoEncoder (VAE) is a generative neural network model based on
Variational Bayes (VB) proposed by DP Kingma et al. [22]. Its character is to use
probabilities for the observation of the potential space.

(4) Compressive AutoEncoder

Compressive AutoEncoder (CAE) features a regular term within its objective
function that allows the model to obtain training data with subtle variations from the
original data during training [23]. This input of training data allows the model to learn
more about the hidden information contained in the data, while improving the
robustness of the model mapping process.

3.2 Context-based unsupervised learning. The contextual information contained in
the data itself is one of the features that can be learned by unsupervised learning models.
For example, Word2vec [24-25], a classical model in the field of natural language
processing, has the structure shown in FIGURE 2. Word2vec takes the contextual words
of words into account when training the model parameters, and constructs the
Skip-gram model that predicts the context of a word by its context and the CBOW
model that predicts a word by its context. Combining these two models, Word2vec
converts words into feature vectors that are used in various computational tasks
downstream.
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FIGURE 2 The structure of Word2vec

In the field of image processing, context encompasses multiple directions in the plane,
including contextual similarity and spatial contextual structure. For example, R Zhang
[26] constructed a "coloring Turing test" by building a model such as convolutional
neural network and other models, and a new coloring method by a cross-channel
encoder. M Caron et al.[27] proposed a new image feature extraction model,
DeepCluster, which firstly divided the original image into several categories by image
clustering, and applied the image-label mapping to the training and parameter updating
of ConvNet, and achieved good results. C Doersch et al.[28] constructed a
convolutional neural network to train the relative positions of two adjacent images with
the help of the rich context information in the image space, trained the model to
recognize the scene features, object features and some of the features, and applied them
to the relative space reasoning, as shown in FIGURE 3.
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FIGURE 3 Relative space reasoning task [28]

Another type of task involving image contextual inference is missing image

completion. Researchers remove a portion of an image and then train a model to achieve
prediction and complementation. For example, D Pathak et al.[29] trained an encoder
that converts image context information into feature vectors and a decoder that
generates image data using feature vectors respectively, to construct an adversarial-like
Encoder-Decoder structure, and combined them to accomplish the task of missing
image completion. The results show that the model trained and learned by this task is
able to understand the content of the images.

3.3 Time-series based unsupervised learning. A typical data modality for
unsupervised learning based on temporal order, which uses information contained in
data with temporal order as a constraint, is video data.

P Sermanet et al.[30] perform representation learning for video based on a
parsimonious idea, that is, multiple frames adjacent to each other in time have more
similarity, while frames far apart in time have less similarity. By constructing such
similar frame pairs and dissimilar frame pairs, the Time-Contrastive Network (TCN) is
trained to construct the semantic features of the video. W Zhu et al.[31] design the key
object mining algorithm based on the information of image adjacent frames to identify
the key video segments and give the classification results of the video segments at the
same time. L Wang et al. [32] designed the Temporal Segment Network (TSN) based
on image data to improve the learning effect of the convolutional neural network for
action with the feature of image frame continuity. Ishan Misra et al.[33] extracted the
video sequential information from the original temporal information in the video by
constructing the correct temporal video data as positive samples and sampling the
wrong of the temporal sequence video data as negative samples, and then inputting
them into the convolutional neural network for training so that the model learned how to
judge whether the video timing is correct or not.
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FIGURE 4 Video timing judgement model developed by Ishan Misra [33]

3.4 Comparison-based unsupervised learning. Contrast-based unsupervised learning
is to discover and construct the characteristics of things by encoding and learning the
similarity or dissimilarity of two things. Its core is to construct an eigenvector mapping
function f{x) so that for any data x, the following equation can be applied:

score(Ax), Ax")) » score(Ax), Ax"))#(7)

Where x7 is the sample that is correlated with x (positive sample); x~ is the sample

that is not correlated with x (negative sample). Thus, the neural network learns the
features between the data by learning the differences among positive and negative
samples.
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FIGURE 5 The structure of Deep InfoMax [34-35]

The Deep InfoMax model constructed by WL Hamilton et al. [34-35] is a typical
contrast-based unsupervised learning, and its specific structure is shown in. Deep
InfoMax uses both global features expressed as the final output of the encoder and local
features expressed as the hidden layer of the encoder, and applies them to the learning
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of positive and negative image samples.

4 Current status of single-modal feature learning research based on unsupervised
learning

4.1 Text Feature Learning. Among all the feature learning for modal data, the related
research for text data is the most extensive and one of the focuses of the current tasks
related to text computing. The core of text feature learning is to extract the implicit
feature information in text data in the form of feature vectors for downstream model
computation and analysis. At present, text feature learning based on the Latin alphabet
is relatively mature, and there are a large number of models and corresponding
open-source tools to support automatically generating feature vector representations
from text data. However, the mainstream text feature learning models deal with Latin
languages, and are less capable of handling non-Latin languages. As for Chinese, a
typical non-Latin language, its minimum processing unit is a meaningful single Chinese
character, rather than a word in Latin languages. Therefore, Chinese text feature
learning is quite different from Latin text feature learning, and cannot simply use the
same model for analysis and processing.

The prerequisite for text feature learning is the conversion of text into a
representation that can be understood by a computer, i.e., a text representation.
According to the model used, text representation can be divided into two types:
statistical-based models and vector space-based models. Statistical-based models are
represented by Boolean and bag-of-words models, which were commonly used for early
text representation. With the development of text analysis, statistical-based models are
gradually replaced by models based on vector space due to their discrete characteristics
and difficulty in handling continuous text computation tasks.

Vector space-based models are the mainstream of text representation nowadays, such
as Latent Dirichlet Allocation (LDA)[36-37] for unsupervised topic model generation
methods, TF-IDF (Term Frequency-Inverse)[38] for paragraph and document
representation, and so on. In 2003, Y Bengio et al.[39] proposed a method for building
language models based on neural network models, creating a direction for creating text
representations with the help of neural networks. The advantage is that the text
representation obtained by neural networks is a low-dimensional dense vector, capable
of representing semantic relevance. After introducing neural network models into text
vectorization, it gradually became the mainstream direction for text feature learning
because of its convenience, flexibility, and other advantages.

Word2vec, proposed by Mikolov et al. in 2013[26-27], is also a typical model of
neural network models for text representation. After Word2vec, Q Le et al.[40]
extended its idea to the whole document by directly treating document IDs as special
words and putting in a large corpus for training, forming the Doc2vec model.
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FIGURE 6 The structure of BERT, GPT and ELMo [42]

Word2vec and Doc2vec have made a large number of pre-training models a popular
direction of research. ME Peters et al. [41] constructed the unsupervised text feature
learning model ELMo (Embedding from Language Model) based on text features using
bidirectional LSTM. J Devlin et al. [42] constructed BERT using a bidirectional
Transformer model.

Based on existing models, there are many related kinds of research trying to fuse
model approaches to improve the effectiveness of text feature learning. Piotr
Bojanowski et al.[43] constructed FastText model for text classification based on the
Skip-gram model and N-gram feature, which improves the speed of model training
under large data and supports multiple language representation. Y. Kim et al.[44] fused
the advantages of RNN in capturing dependencies and CNN in recognizing local
features to build a TextCNN text classification model and achieved better results. P
Zhou et al. [45] combined the bidirectional LSTM model and 2D convolution and
proposed a BLSTM-2DCNN model to obtain a fixed-length vector representation of
text data.
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FIGURE 7 The structure of TextCNN [44]
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4.2 Image feature learning. Unlike text data, features of the smallest constituent pixel
of image data are worthless. A feature has its value only if it has some structural or
practical meaning. Traditional methods such as SIFT and HOG perform feature learning
on images through the features of the histogram of map directions in the image. HOG
feature units are smaller in size and less sensitive to local contrast changes in the image,
and thus have better feature extraction for objects in complex environments; while SIFT
features are usually calculated after a certain transformation of a square area in the
image, and thus have good characteristics for rigid object feature extraction has good
characteristics.

With the development of deep learning, image feature extraction through neural
networks has become possible. Deep learning can better fit and extract the features of an
image by self-learning, and its expression effect is generally higher than that of
traditional image feature learning algorithms. For example, the concept of "image
decoupling" proposed by R Zhang et al.[46] can be accomplished by splitting the
original input image, such as dividing the original image into grayscale and color maps,
and then predicting the image information from one part of the image information to
another part of the image information, and finally synthesizing the predicted data. This
is done by "decoupling" pairs of training data from the original data. This
"self-learning" splitting of training data enables the model to understand and learn more
about the semantic information contained in the image.
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A similar idea of "data augmentation" proposed by S Gidaris et al. [47] is also worth
learning. In this paper, the input image is expanded into four images with different
orientations by rotating the given input training image by 90 degrees, 180 degrees, 270
degrees, and itself, and passing them into ConvNet as a data set for training, which
achieves an unexpected enhancement effect.
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S Current status of research on multimodal feature learning based on
unsupervised learning. While feature extraction for single-modal data is relatively
mature, cross-modal analysis has become a focused area in the academic community
today due to its importance in tasks including machine translation and object
recognition. Current work on feature analysis of cross-modal data is mainly focused
between text-based data and image-based data.

For unsupervised learning, multimodal feature learning mainly obtains information
from co-occurrence, e.g., data of different modalities co-occurring in a document are
related to each other, and thus may be semantically related.

Kaiye Wang et al.[48] broadly classified the unsupervised multimodal feature
learning into three types: subspace mapping, topic modeling, and deep learning, and all
three types can be combined into the same idea, i.e., by performing feature learning on
text-based data, image-based data, and data from other modalities, respectively, and
mapping them to common feature space for similarity computation.

C Sun et al.[49] performed the first joint entity extraction of text data and image data,
paired known image data and its text labels in the process of image extraction, classified
the image data according to the pre-processed text data, and compared them with the
image similarity index. After a cross-sectional comparison with related models, the
authors demonstrate that VCD (Visual Concept Discovery), a model for image
similarity comparison after text data extraction and pairing, can effectively improve the
efficiency of image similarity comparison.
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Q Fang et al. [50] combined and clustered classified image and text data, and used a
clustering model for concept search, relationship extraction, and contextual relationship
establishment, and the model significantly enhanced the effect of processing noisy and
redundant labels. Y Zhu et al.[51] unified image data and its corresponding text by
constructing a multimodal knowledge base structure, and creatively treated image data
as the same level as text data, and then realized several popular functions such as a
visual quiz.

6 Current state of Knowledge Fusion research based on unsupervised learning.
Knowledge Fusion is the downstream part of multimodal data fusion, and its core is to
parse and map heterogeneous data from different sources, different modalities and
different structures into a unified, single structured and interpretable semantic structure
based on semantic features[52]. Its main operation is addition and deletion, i.e., adding
new entities or relations to the semantic structure based on the parsed semantic
knowledge, and removing duplicate or incorrect parts of the semantic structure to finally
form a more complete and accurate knowledge graph. Multimodal data analysis is an
indispensable part of a complete big data analysis process, and the difficulty lies
precisely in the diversity of big data: the absence of modality, the incomplete and
uneven data of different modalities, and the high dimensional properties of modal data,
which all bring new challenges to multimodal data fusion.

Knowledge Extraction is a link between semantic alignment and knowledge fusion.
The goal of multimodal knowledge extraction is to achieve the extraction of knowledge
from multimodal data, which has been pre-processed, by machine automation.
According to the current research status in the academic community, knowledge
extraction can be classified into three categories: Entity Extraction, Attribute Extraction,
and Relationship Extraction.

The core of entity extraction is to identify and extract entities from data, which is also
the premise of attribute extraction and relationship extraction. Knowledge extraction for
modal data such as images is an emerging research direction in recent years.

In addition to entity extraction, attribute extraction and relationship extraction are
also important parts of knowledge extraction. Most of the existing studies consider the
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attributes of an entity as a formal concept, which in turn enables the association of
attribute extraction with entity extraction to reduce the complexity of attribute
extraction. The IMGpedia system proposed by S Ferrada et al.[53] in 2017 extracts a
large amount of image visualization information from the Wikimedia dataset and
constructs 15 million visualizations based on these visual content descriptors with 450
million visual similarities between images. In 2019, Y Liu et al.[54] connected three
knowledge graphs containing digital text and images through the relational words of
Same-As and successfully implemented relational inference among different knowledge
graphs.

Earlier feature-based multimodal data fusion work was to merge and analyze the
features of all modalities directly, and then complete the subsequent classification,
clustering, and prediction based on the merged new features. This can greatly simplify
the problem of articulation between features of different modalities, but it also ignores
the association between features of different modalities and generates more
dependencies[55]. The subsequent alignment task transforms alignment into the
computation of similarity between entities or events. HB Newcombe [56] and IP Fellegi
et al.[57] further discretize similarity with continuous results into a triple classification
problem, i.e., three classes of exact matches, partial matches, and mismatches.

similarity < t; —» mismatch
{t; < similarity < t, = partial match #(2)
similarity = t, » match

Where ¢; and ¢, are the similarity thresholds for determining mismatch and match,

respectively. The advantage of this alignment approach is that it can assign a unique
weight to each entity pair, which is directly related to the final matching degree of the
two, and thus affects whether the alignment operation is performed. However, the
problem of this approach is that the relationship between two entities is only determined
by a similarity value that includes the influence of all possible attributes between them,
and the weight of different attributes on the similarity cannot be measured, which
affects the granularity and interpretability of entity alignment.

Recent research, on the other hand, has relied more on deep learning and neural
networks for a unified representation of features of different modalities. Different
features are populated as input data to deep neural networks so that they automatically
learn the features of different modalities and abstract representations of different data,
which in turn are converted into more abstract internal feature parameters of deep neural
networks. For example, N Srivastava et al.[58] constructed a multimodal Deep
Boltzmann Machine (DBM) to fuse the data features of picture modality and text
modality, and integrated the features of both modalities through a layer of top-level
neural network to form a data fusion analysis model.
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FIGURE 12 The structure of multimodal DBM [58]

In addition, Minjie Han [59] designed two corresponding deep neural network
models for different modalities and fused the features extracted from the two models for
the final action recognition and classification. By building a comprehensive neural
network, Lei Zhao [60] processes the input data of different modalities separately and
constructs a multilayer sub-neural network to correspond to them, and finally converts
the heterogeneous modal features into the fused features of the same modality.

7 Future trends. Despite some progress in multimodal data fusion, existing
multimodal data fusion still suffers from the following problems.

(1) Fewer multimodal datasets for large multidisciplinary domains

For most machine learning research, high-quality datasets are an indispensable part.
There are already many high-quality datasets for single-modal data analysis, but the
construction of multimodal public datasets, especially those involving specialized
domains, is still in the development stage. The construction of more datasets will help
researchers to analyze and evaluate the accuracy and performance of multimodal data
fusion algorithms.

(2) Coarse granularity of multimodal data analysis

In the existing multimodal data analysis work, text data is mainly used as the main
data, and the data of other modes is used as the auxiliary for enhancement learning, or
the data of multiple modes are aligned and analyzed with entity granularity, and the
hidden information contained in multimodal data is not fully explored. Mining semantic
knowledge for multimodal data and fusion analysis with the granularity of knowledge
structure will help to better explore the information implied in multimodal data and its
association relationships.

(3) Large computational volume required by the model

The popularity of the Internet and mobile devices has led to a large amount of
user-generated content, and more and more multimodal data are generated and rapidly
disseminated on the Web, bringing challenges to multimodal data fusion analysis.
Unsupervised learning-based multimodal data fusion is one way to address the growth
of data volume. Another method is to reduce the complexity of the model and deploy it
in mobile terminals to achieve "edge computing" for multimodal data fusion.
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8 Conclusions. The study of multimodal data fusion based on unsupervised learning
provides a fast and effective method to break the data isolation between different
modalities and then unify the data of multiple modalities for analysis, which is more
complex and promising for application than the traditional single-modal data analysis.
In this paper, we start from unsupervised learning and its related ideas, based on
single-modal feature learning, outline the multimodal data fusion techniques based on
unsupervised learning in recent years, and discuss the problems and future research
trends of multimodal data fusion based on unsupervised learning. We hope this paper
will help readers understand the development of unsupervised learning and the current
state of research on multimodal data fusion based on unsupervised learning, and inspire
more work that is meaningful.
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